VILLE de Vaudreuil-Dorion

Projet de réaménagement du secteur Harwood
Rapport sur les impacts potentiels et recommandations
AUTEURS
Chargé de projet – courtier de connaissances
Émile Tremblay, responsable de l’Évaluation d’impact sur la santé

Membres du comité scientifique
Manon Blackburn, M.D., équipe Surveillance de l’état de santé de la population
Christine Blanchette, équipe Santé environnementale
Julie Dufort, M.D., secteur Programme adultes-personnes âgées
Jean-Bernard Drapeau, équipe Santé environnementale
Myriam Lalancette, équipe Habitudes de vie saines et sécuritaires
Jean-Pierre Landriault, coordonnateur - Programme adultes-personnes âgées
Gabrielle Manseau, équipe Habitudes de vie saines et sécuritaires
Diane Martel, équipe Déterminants sociaux de la santé
Carmen Schaefer, soutien à la recherche
Mathieu Tremblay, équipe Planification, évaluation et recherche

PARTENAIRES
Ville de Vaudreuil-Dorion
Martin Paré, urbaniste, Service du développement et de l’aménagement du territoire
Diane Lavallée, chef de division, Service du développement et de l’aménagement du territoire

Centres intégrés de santé et de services sociaux (CISSS) de la Montérégie
Carmen Hébert, organisatrice communautaire, CISSS de la Montérégie-Ouest
Marie-Hélène Houle, ergothérapeute, Centre montérégien de réadaptation, CISSS de la Montérégie-Ouest
Élyse Lapointe, kinésiologue, CISSS de la Montérégie-Ouest
Carole Zabihaylo, spécialiste en orientation et mobilité, Institut Nazareth et Louis-Braille, CISSS de la Montérégie-Centre

Dans ce document, le générique masculin est utilisé sans intention discriminatoire et uniquement dans le but d’alléger le texte.

Dépôt légal
Bibliothèque et Archives nationales du Québec, 2016
ISBN : 978-2-89342-706-5 (PDF)

Reproduction ou téléchargement autorisés à des fins non commerciales avec mention de la source :

© Tous droits réservés
Centre intégré de santé et de services sociaux de la Montérégie-Centre, janvier 2016
Table des matières

Municipalité et santé

Évaluation d’impact sur la santé en Montérégie .. 6

Projet et territoire à l’étude

IMPACTS SUR LA SANTÉ ET RECOMMANDATIONS .. 9

Cadre bâti

Les impacts du cadre bâti sur la santé et ses déterminants .. 10
Impacts potentiels du projet de réaménagement du secteur Harwood 12
 Planification globale du secteur Harwood .. 12
 Aménagement des rues ... 20
 Recommandations ... 40

Logements résidentiels

Les impacts du logement sur la santé et ses déterminants .. 49
Impacts potentiels du projet de réaménagement du secteur Harwood 51
 Recommandations ... 55

Sécurité industrielle

Les impacts de la sécurité industrielle sur la santé et ses déterminants 56
Impacts potentiels du projet de réaménagement du secteur Harwood 57
 Entreposage de matières dangereuses .. 57
 Transport de matières dangereuses ... 59
 Recommandations ... 62

Annexes

ANNEXE 1 – Synthèse des recommandations .. 63

ANNEXE 2 – Détectants de la santé affectés par le projet de réaménagement du secteur Harwood ... 67

ANNEXE 3 – Comité mixte municipalité-industries (CMMI) : définition et fonctionnement 72

Bibliographie

... 73
LISTE DES FIGURES

FIGURE 1 : MILIEU DE VIE MUNICIPAL ET SANTE .. 7
FIGURE 2 : PERIMETRE DU PROJET DE REAMENAGEMENT DU SECTEUR HARWOOD ET DU SECTEUR ELARGI ... 8
FIGURE 3 : REPRESENTATION DES IMPACTS POTENTIELS DU PROJET DE REAMENAGEMENT DU SECTEUR HARWOOD SUR LA SANTE ET LA QUALITE DE VIE DES CIToyENS .. 9
FIGURE 4 : PRINCIPAUX IMPACTS DU CADRE BATI SUR LA SANTE ET SES DETERMINANTS .. 11
FIGURE 5 : DENSITE RESIDENTIELLE DU SECTEUR HARWOOD ... 13
FIGURE 6 : EFFET DE LA COMPACITE SUR LA HAUTEUR DES IMmeUBLES ET L’AMENAGEMENT D’UN QUARTIER .. 14
FIGURE 7 : TEMPERATURE DE SURFACE DU SECTEUR HARWOOD ... 17
FIGURE 8 : TUNNEL RELIANT L’AVENUE SAINT-CHARLES ET LA RUE VALOIS, VAUDREUIL-DORION .. 18
FIGURE 9 : TUNNELS DE FORME RECTANGULAIRE ET ARQUEE ... 18
FIGURE 10 : TERRITOIRE ACCESSIBLE EN MOINS DE 15 MINUTES A PIED OU A VELO, AVEC OU SANS PASSAGE SOUS LA VOIE FERREE ET L’AUTORoute 19
FIGURE 11 : SECTEUR VISANT A LIMITER LA VITESSE A 30 KM/H, CANDiac .. 21
FIGURE 12 : EXEMPLE D’ILLOT VEGETALISE A UNE INTERSECTION, BROMONT .. 21
FIGURE 13 : DENIVELE DANS LA BORDURE DU TROTTOIR .. 21
FIGURE 14 : EXEMPLE D’AVANCEES DE TROTTOIR AU PASSAGE JAUNE, GRANBY .. 22
FIGURE 15 : EXEMPLE D’AVANCEES DE TROTTOIR AU PASSAGE JAUNE, BEDFORD .. 22
FIGURE 16 : CONFIGURATION DU BATEAU PAVE, AVEC SURFACE AVERTISSANTE DETECTABLE TACTIELLEMENT ET VISUELLEMENT .. 22
FIGURE 17 : SURFACE AVERTISSANTE DETECTABLE TACTIELLEMENT ET VISUELLEMENT .. 23
FIGURE 18 : INTERSECTION TEXTUREE, MONT-SAINT-HILAIRE .. 23
FIGURE 19 : INTERSECTION SURELEVEE ET TEXTUREE .. 23
FIGURE 20 : EXEMPLE D’UNE PLACETTE, BROMONT .. 24
FIGURE 21 : RESEAU CYCLABLE ACTUEL ET PROPOSE POUR LE SECTEUR HARWOOD ET SES ENVIRONS .. 25
FIGURE 22 : SIGNALISATION CYCLABLE POUR LES LIEUX D’INTERET .. 26
FIGURE 23 : CARTE DU RESEAU CYCLABLE, VILLE DE QUEBEC .. 27
FIGURE 24 : VOIE RESERVEE AUX AUTOBUS PERMETTANT UNE COHABITATION AVEC LES VELOS .. 27
FIGURE 25 : PROPOSITION DE REAMENAGEMENT DU BOULEVARD HARWOOD .. 28
FIGURE 26 : COMPARAISON DES POINTS DE CONFLIT ENTRE UN CARREFOUR GIRATOIRE ET UNE INTERSECTION .. 29
FIGURE 27 : AMENAGEMENT DES CARREFOURS GIRATOIRES A UNE DEUX VOIES .. 30
FIGURE 28 : PROPOSITION DE REAMENAGEMENT DE LA RUE CHICOINE, SEGMENT A L’OUEST DE LA RUE DE LOTBINIERE .. 31
FIGURE 29 : PROPOSITION DE REAMENAGEMENT DE LA RUE CHICOINE, SEGMENT A L’EST DE LA RUE DE LOTBINIERE .. 31
FIGURE 30 : PROPOSITION DE REAMENAGEMENT DE LA RUE DE LOTBINIERE .. 32
FIGURE 31 : PROPOSITION DE REAMENAGEMENT DE L’AVENUE DE LA FABRIQUE .. 33
FIGURE 32 : PROPOSITION DE REAMENAGEMENT DE L’AVENUE SAINT-JEAN-BAPTISTE, SEGMENT SITU AUX NORD DE L’INTERSECTION AVEC L’AVENUE SAINT-CHARLES .. 33
FIGURE 33 : PROPOSITION DE REAMENAGEMENT DE L’AVENUE SAINT-JEAN-BAPTISTE, SEGMENT SITU AUX SUD DE L’INTERSECTION AVEC L’AVENUE SAINT-CHARLES .. 33
FIGURE 34 : PROPOSITION D’AMENAGEMENT DES RUES D’ORIENTATION NORD-SUD DE L’ILLOT PASOLD .. 35
FIGURE 35 : PROPOSITION D’AMENAGEMENT DE LA RUE D’ORIENTATION EST-OUEST DE L’ILLOT PASOLD .. 36
FIGURE 36 : PROPOSITION D’AMENAGEMENT DU CORRIDOR ACTIF DE L’ILLOT PASOLD .. 36
FIGURE 37 : TERRITOIRE ACCESSIBLE EN MOINS DE 15 MINUTES A PIED OU A VELO A PARTIR DE LA GARE DORION .. 37
FIGURE 38 : OBSTACLE IDENTIFIE SUR LA RUE VALOIS, MANQUE DE VISIBILITE POUR ACCEDER A LA PASSERELLE .. 38
FIGURE 39 : SCHEMA D’AMENAGEMENT DU TALUS ET DU MUR ANTI-BRUIT PRÉVUS SUR LE COTE SUD DE L’A-20 .. 38
FIGURE 40 : VARIATION DES NIVEAUX D’ÉMISSIONS DES POLLUANTS SELON LA VITESSE MOYENNE D’UNE VOITURE A ESSENCE AVEC CONVERTISSEUR CATALYTIQUE ... 39
FIGURE 41 : PRINCIPAUX IMPACTS DES PARCS ET ESPACES VERTS URBAINS SUR LA SANTE ET LA QUALITÉ DE VIE ... 43
FIGURE 42 : LOCALISATION DES PARCS ET DE LEUR AIRE D’INFLUENCE ... 46
FIGURE 43 : EXEMPLE DE COFFRES À JEU LIBRE ET DE « CROQUE-LIVRES » .. 47
FIGURE 44 : PRINCIPAUX IMPACTS DES PARCS ET ESPACES VERTS URBAINS SUR LA SANTE ET SES DÉTERMINANTS.............................. 50
FIGURE 45 : CARTE DES RAYONS D’INTERVENTION MINIMUMS ET MAXIMUMS EN CAS D’ACCIDENTS INDUSTRIELS À VAUDREUIL-DORION ... 58
FIGURE 46 : PROPORTION DE LA POPULATION DE 12 ANS ET PLUS ATTEINTE DE MALADIES CARDIAQUES SELON LE QUINTILE DE REVENU DU MENAGE, QUÉBEC, 2009-2010 .. 69
FIGURE 47 : PROPORTION DE LA POPULATION DE 12 ANS ET PLUS PERCEVANT SON ÉTAT DE SANTÉ MENTALE EXCELLENT OU TRÈS BON SELON LE QUINTILE DE REVENU DU MENAGE, MONTEREGIE, 2009-2010 .. 69

LISTE DES TABLEAUX

TABLEAU 1 : ESTIMATION DE LA SUPERFICIE MINIMALE DU SECTEUR HARWOOD OCCUPEE PAR DES CASES DE STATIONNEMENT RESIDENTIEL, SELON LE RATIO DE CASES PAR LOGEMENT, POUR DES CASES DE TAILLE NORMALE .. 16
TABLEAU 2 : ESTIMATION DE LA SUPERFICIE MINIMALE DU SECTEUR HARWOOD OCCUPEE PAR DES CASES DE STATIONNEMENT RESIDENTIEL, SELON LE RATIO DE CASES PAR LOGEMENT, POUR DES CASES DE TAILLE REDUIT .. 16
TABLEAU 3 : LISTE DES PARCS EXISTANTS ET PREVUS DANS LE SECTEUR HARWOOD .. 45
TABLEAU 4 : NORMES D’UN LOGEMENT ACCEPTABLE SELON LA SCHL (INDICATEURS COMPOSITES) ... 51
TABLEAU 5 : INDICATEURS DE LA SITUATION SOCIOÉCONOMIQUE DE LA POPULATION, POUR LE SECTEUR HARWOOD ELARGI, VAUDREUIL-DORION ET LA MONTEREGIE, 2011 .. 52
TABLEAU 6 : ÉTAT D’ACCEPTABILITÉ DES LOGEMENTS POUR LES LOCATAIRES, POUR LE SECTEUR HARWOOD ELARGI, VAUDREUIL-DORION ET LA MONTEREGIE, 2011 .. 54
TABLEAU 7 : ÉTAT D’ACCEPTABILITÉ DES LOGEMENTS POUR LES PROPRIÉTAIRES, POUR LE SECTEUR HARWOOD ELARGI, VAUDREUIL-DORION ET LA MONTEREGIE, 2011 .. 54
TABLEAU 8 : ENTREPRISES DE VAUDREUIL-DORION DECLARENT DES MATIÈRES DANGEREUSES EN VERTU DU RUE .. 59
MUNICIPALITÉ ET SANTÉ

Une municipalité est souvent associée à une organisation responsable de la gestion d’infrastructures, de l’administration des questions d’ordre foncier ou de la dispensation de services aux citoyens. Or, la municipalité est également un milieu de vie complexe, circonscrit sur un territoire donné, au sein duquel les citoyens entrent en contact les uns avec les autres et se développent au gré de leurs interactions avec leur environnement.

Le milieu de vie municipal, illustré à la Figure 1, se compose des environnements naturels et bâtis ainsi que des services et règlements, directement sous l’autorité des administrations municipales, et dont les influences se répercutent notamment à travers l’économie locale, la communauté et les habitudes de vie des citoyens. Ce milieu de vie est sensible aux décisions municipales puisque toute action affectant les environnements dans lesquels vivent les citoyens et les services qui leur sont offerts est susceptible d’influencer leur santé et leur qualité de vie. Dans cette perspective, et en raison des nombreux pouvoirs et leviers dont disposent les municipalités, les administrations municipales doivent être considérées comme des acteurs incontournables du développement du mieux-être et de la santé de leurs citoyens.

ÉVALUATION D’IMPACT SUR LA SANTÉ EN MONTÉRÉGIE

La Direction de santé publique (DSP) de la Montérégie est la première DSP du Québec à offrir aux municipalités de son territoire la possibilité de participer à une démarche d’évaluation d’impact sur la santé (EIS). En s’inscrivant dans un vaste courant international, et en s’appuyant sur le concept de milieu de vie municipal, la DSP de la Montérégie innove en permettant aux municipalités d’anticiper les impacts sur la santé d’un projet particulier, avant que celui-ci ne soit mis en œuvre.

Basé sur le partenariat, le dialogue et le partage de connaissances entre les décideurs municipaux et une équipe multidisciplinaire de professionnels de santé publique, le processus d’EIS permet de poser un regard nouveau sur un projet en cours d’élaboration afin d’en maximiser les effets bénéfiques sur la santé et la qualité de vie des citoyens concernés et d’en atténuer les répercussions potentiellement négatives. Aux termes de l’EIS, les décideurs municipaux disposent d’analyses et de recommandations qui tiennent compte de leur réalité locale et qui permettent d’accroître le potentiel santé de leur projet.
Figure 1 : Milieu de vie municipal et santé

Le schéma ci-contre représente les diverses composantes du milieu de vie municipal. La zone bleue représente les champs d’action directs de la municipalité dont les répercussions peuvent se faire sentir sur les composantes de la zone verte.

Les environnements naturels et bâtis ainsi que les services et règlements municipaux représentent autant de champs d’action à la disposition de la municipalité pour influencer d’autres composantes du milieu de vie qui échappent à leur contrôle direct, soit l’économie locale, la communauté et les habitudes de vie des citoyens.

L’ensemble des actions posées par les municipalités est susceptible d’influencer leur milieu de vie. Elles sont ainsi une source d’influence majeure pour la santé, le bien-être et la qualité de vie de leurs citoyens.
PROJET ET TERRITOIRE À L’ÉTUDE

Le projet de réaménagement du secteur Harwood est une initiative municipale découlant du projet de parachèvement de l’autoroute 20 (A-20), dont le futur tracé permettra de contourner le centre-ville de l’ancienne ville de Dorion. En libérant le boulevard Harwood de son statut d’autoroute nationale et de voie de transit pour les déplacements régionaux, le parachèvement de l’A-20 permettra de réaménager le boulevard et d’offrir une nouvelle vocation à l’ensemble du secteur.

Le programme particulier d’urbanisme (PPU) du secteur Harwood s’inscrit dans le contexte du Plan métropolitain d’aménagement et de développement (PMAD) du Grand Montréal. Il vise le réaménagement complet de ce territoire de 60 hectares (ha), dont les limites sont représentées à la Figure 2, par la création d’un milieu de vie axé sur le développement résidentiel à forte densité, les commerces de proximité et l’accès à un service structurant de transport collectif. De plus, la Figure 2 présente le périmètre du secteur Harwood élargi utilisé pour documenter le profil sociodémographique de la population la plus susceptible d’être influencée par le projet de réaménagement.

Figure 2 : Périmètre du projet de réaménagement du secteur Harwood et du secteur élargi
IMPACTS SUR LA SANTÉ ET RECOMMANDATIONS

Afin de mettre en lumière les impacts potentiels du projet de réaménagement du secteur Harwood sur la santé, le bien-être et la qualité de vie des futurs citoyens, les analyses qui suivent proposent une lecture des enjeux liés au cadre bâti et à la mobilité, aux parcs et espaces verts urbains, au logement résidentiel et à la sécurité industrielle. Ces enjeux et principales caractéristiques du projet peuvent être mis en relation avec la santé à travers plusieurs facteurs déterminants (voir Figure 3). Ces interrelations entre les caractéristiques du projet et les facteurs déterminants révèlent qu’en agissant sur les premières, il est possible d’influencer considérablement la santé et la qualité de vie des citoyens. Pour chacune des caractéristiques énoncées, des recommandations sont apportées afin de proposer des pistes d’amélioration et de bonifier les retombées du projet sur la santé et la qualité de vie des citoyens qui vivront au sein du secteur Harwood et dans son environnement immédiat. Une synthèse des recommandations est présentée à l’Annexe 1. Chacun des déterminants de la santé identifiés à la Figure 3 fait l’objet d’une description à l’Annexe 2 quant à leurs effets respectifs sur la santé.

Figure 3 : Représentation des impacts potentiels du projet de réaménagement du secteur Harwood sur la santé et la qualité de vie des citoyens
CADRE BÂTI

L’environnement, ou cadre bâti, est constitué des éléments construits par l’homme. Il repose sur les aménagements urbains conçus par les villes auxquels les citoyens sont exposés et avec lesquels ils interagissent quotidiennement. Le cadre bâti, tel qu’analysé ici, comprend les règles d’occupation du sol pour les édifices, les infrastructures routières, piétonnières et cyclables, les stationnements, la végétalisation, le mobilier urbain ainsi que l’éclairage des espaces publics.

Le réaménagement prévu par la Ville de Vaudreuil-Dorion dans le cadre de ce projet changera radicalement le cadre bâti du secteur Harwood. L’environnement bâti étant reconnu pour agir sur la santé et la qualité de vie des citoyens, ce projet de réaménagement est donc susceptible d’influencer directement la vie des résidents et visiteurs du secteur. Avant de détailler ces impacts potentiels, voici un résumé des effets du cadre bâti sur la santé.

Les impacts du cadre bâti sur la santé et ses déterminants

Le cadre bâti est reconnu pour influencer la santé et la qualité de vie des citoyens à de multiples niveaux. Tel que représenté à la Figure 4, le cadre bâti a des impacts sur l’activité physique, la sécurité, les îlots de chaleur urbains, la qualité de l’air extérieur, le bruit, les conditions socioéconomiques et le capital social des citoyens.

Le cadre bâti influence directement la capacité des citoyens à utiliser des modes de déplacements actifs, tels que la marche ou le vélo. Par exemple, la densité résidentielle, la mixité fonctionnelle d’un territoire et la connectivité des rues sont reconnues pour influencer le potentiel de déplacements actifs en rapprochant les résidences des commerces et autres destinations utilitaires et en créant des parcours de marche ou de vélo plus courts [2].

La diminution du volume de transport motorisé ainsi générée par l’augmentation du nombre de déplacements actifs à l’intérieur d’un quartier, améliore la sécurité et diminue les risques d’accidents (blessures et décès) [3]. Par ailleurs, la réduction des transports motorisés permet aussi d’améliorer le bilan de la qualité de l’air par la diminution des rejets de polluants et de réduire le bruit routier. À cet effet, le bruit routier constitue la principale source de bruit environnemental rapportée par les Montérégiens alors que 34 % des adultes se disent souvent exposés et 15 % affirment en être incommodés [4]. Enfin, une réduction des transports motorisés diminue les besoins en infrastructures routières pour automobiles et permet par la même occasion de réduire le potentiel de formation des îlots de chaleur urbains (ICU). Cette diminution des surfaces minéralisées peut laisser place à une augmentation du couvert végétal dont les bienfaits participent autant à l’amélioration de la qualité de l’air qu’à la prévention des ICU.

Un aménagement de rues offrant plus d’espace aux piétons et aux cyclistes, comprenant notamment des pistes cyclables, des trottoirs et des passages piétonniers, de la végétation, un éclairage adéquat et du mobilier urbain, favorise les déplacements actifs, renforce la sécurité et crée une dynamique de voisinage favorable au capital social [5-9].

L’accès à des moyens de transport adéquats contribuent également à la santé et au bien-être des citoyens. Ils permettent une meilleure accessibilité à tous les services et biens essentiels à une vie en bonne santé, tels que les commerces alimentaires, les pharmacies et les établissements scolaires, de soins de santé et de
services sociaux [10-12]. L’accès à des modes de transport de qualité permet aussi aux citoyens de demeurer socialement actifs en favorisant pleinement leur participation sociale au sein de la communauté et en réduisant l’exclusion sociale [13-17]. À titre d’exemple, un service de transport collectif abordable, accessible et convivial constitue un moyen adéquat pour réduire l’isolement social, renforcer le soutien social et ainsi procurer des bénéfices importants à la santé et à la qualité de vie des citoyens [18-20]. L’accès à des modes de transport adéquat permet également d’être économiquement actifs en favorisant la scolarisation et en donnant un plus grand accès à des emplois de qualité [16, 21-23].

Figure 4 : Principaux impacts du cadre bâti sur la santé et ses déterminants
Impacts potentiels du projet de réaménagement du secteur Harwood

Le réaménagement du secteur Harwood, fondé sur le déplacement de l’A-20 dans sa périphérie et la conversion de son emprise actuelle en boulevard urbain, se traduira par un réaménagement complet de cette zone de plus de 60 hectares (ha) et la création d’un nouveau milieu de vie pour plus de 5 000 citoyens.

Considérant les impacts potentiels qu’aura le cadre bâti de ce nouveau centre-ville sur la santé et la qualité de vie des futurs résidents et visiteurs, les analyses qui suivent proposent une lecture des principales initiatives municipales prévues afin d’en anticiper les retombées, puis de proposer des recommandations susceptibles d’en améliorer la portée. Elles présentent successivement des analyses sur la planification globale du secteur Harwood et l’aménagement de ses rues.

Planification globale du secteur Harwood

Le secteur Harwood est caractérisé par deux types d’environnement bâti. Le premier, situé à proximité de la gare Dorion et davantage associé au Vieux-Dorion, possède une trame de rues orthogonales où le bâti est plus dense et compact. Ce secteur aménagé avant la démocratisation de l’automobile, c’est-à-dire la première moitié du 20ème siècle, bénéficie d’une trame de rue facilitant les déplacements actifs des citoyens. Le second type d’environnement bâti se trouve aux abords du boulevard Harwood et à l’ouest de la rue De Lotbinière. Il est représentatif de la planification urbaine des années 50 et 60 où les emprises routières et les développements résidentiels et commerciaux étaient conçus pour faciliter les déplacements en voiture.

À Vaudreuil-Dorion, cette réalité des aménagements conçus prioritairement pour l’automobile s’illustre par un taux de motorisation de 1,75 automobile par logement en 2013, en augmentation de 7 % par rapport à 2008 [24, 25]. Cette forte présence automobile influence les habitudes de déplacement des citoyens alors que 86 % des déplacements générés à partir de Vaudreuil-Dorion sont faits en automobile, 4 % en transport en commun (TC) et 7 % à pied ou à vélo [25].

Afin d’inverser cette prédominance du transport motorisé et répondre à l’objectif municipal d’accroître le potentiel de transport actif et collectif, il apparaît essentiel de viser une densité résidentielle suffisamment élevée pour l’ensemble du secteur Harwood. À ce titre, une densité de 17 logements par hectare (log/ha) permet l’offre d’un service de TC de base (fréquence aux 30 minutes sur les heures de pointe), alors qu’une densité de 37 log/ha favorise l’offre d’un service performant (fréquence de passage aux 10 minutes) [26-31].

La densité résidentielle brute estimée de 43 log/ha pour le secteur Harwood, correspondant à un potentiel de 2 300 nouveaux logements sur un territoire en comptant déjà 300, apparaît adéquate. En plus de soutenir un meilleur déploiement du service de TC et d’augmenter son potentiel d’utilisateurs, cette densité contribuerait à renforcer le développement de l’activité commerciale prévue sur le boulevard Harwood et la route De Lotbinière.

Par ailleurs, considérant les objectifs du PMAD quant à l’augmentation de la densification résidentielle à l’intérieur et l’extérieur des aires TOD, il pourrait s’avérer avantageux pour la Ville de densifier prioritairement les secteurs situés à proximité de la gare Dorion. Une augmentation des faibles densités résidentielles observées dans les secteurs concernés, illustrées à la Figure 5, permettrait de mieux soutenir le développement du TC sur tout le territoire de l’aire TOD et d’offrir un service plus performant dans l’ensemble de la municipalité.
Afin de minimiser les constructions en hauteur et les nuisances potentielles associées à une densité résidentielle élevée, une compacité moyenne à élevée devrait être privilégiée. Celle-ci facilite notamment les déplacements à pied en rapprochant les bâtiments de la rue et en réduisant les espaces vacants. Une telle compacité dans le secteur Harwood permettrait d’assurer une meilleure harmonisation avec les quartiers existants en limitant les constructions en hauteur. La Figure 6 présente trois niveaux de compacité et leur effet sur la hauteur des immeubles et l’aménagement d’un quartier.

Selon le PPU, de nombreux commerces et services devraient s’établir aux abords du boulevard Harwood et de la route De Lotbinière. La présence de commerces et services à proximité d’un grand nombre de résidences est rendu possible grâce à une forte densité résidentielle. Ceci devrait renforcer la mixité fonctionnelle du secteur et contribuer à créer un milieu de vie plus favorable aux déplacements actifs par la diminution des distances de parcours, tout en limitant du même coup les déplacements en voiture. L’augmentation de l’affluence de piétons et de cyclistes dans les rues et places publiques du secteur permettrait alors d’assurer une plus grande surveillance informelle des lieux publics et de renforcer le sentiment de sécurité des résidents et visiteurs du secteur [32, 33].
Cette augmentation du potentiel de déplacements actifs, soutenue à la fois par une plus grande mixité fonctionnelle du secteur Harwood et la proximité de la gare Dorion, permettra vraisemblablement de diminuer la dépendance et l’utilisation du transport en voiture pour les déplacements de courte distance. Pour soutenir cette transition des modes de transport motorisé vers les transports actifs, une attention particulière devrait être apportée à la quantité de stationnements résidentiels offerts dans le secteur Harwood. En considérant le taux de motorisation de 1,75 véhicule par ménage à l’échelle de la municipalité de même que la diminution anticipée du recours à l’automobile, il apparait pertinent de fixer un ratio maximal de 1,25 case de stationnement par unité résidentielle pour l’ensemble du secteur Harwood. Cette moyenne de 1,25 case pourrait être modulée selon la distance entre les résidences et la gare Dorion. Dans cette perspective, les résidences situées à l’intérieur de l’aire TOD pourraient être construites avec une case par logement alors que celles situées aux extrémités sud et ouest du secteur Harwood pourraient être aménagées avec 1,5 case par unité résidentielle. En plus de réduire la congestion routière du secteur, cette mesure permettrait d’améliorer la sécurité des automobilistes, cyclistes et piétons en plus de diminuer les rejets de polluants atmosphériques associés aux véhicules motorisés.

Par ailleurs, les aires de stationnement contribuent significativement à la formation des ICU. Une réduction de leur nombre permettrait de minimiser la minéralisation (asphaltage) du secteur Harwood et de maximiser la superficie des espaces verts ou le nombre de commerces de proximité. Le Tableau 1 présente la superficie occupée par les aires de stationnement en fonction du ratio de cases autorisées par logement. On observe ainsi qu’autoriser un ratio de 1,25 case plutôt que 2 cases par unité résidentielle permettrait de réduire la superficie combinée des stationnements de près de 5 ha. Cette superficie représente plus de 8 % du secteur Harwood.
Pour réduire davantage l’espace occupé par les aires de stationnement, la taille des cases devrait passer de 2,7 m x 5,5 m à 2,5 m x 5,0 m et la largeur des allées de circulation de 7,5 m à 6,0 m, comme recommandé par le Bureau de normalisation du Québec (norme 3019-190). Ceci permettrait une réduction additionnelle de 20 % des superficies allouées aux aires de stationnement et ainsi diminuer substantiellement les probabilités de formation des ICU [35]. Le Tableau 2 présente les gains associés à l’application de cette norme pour le secteur Harwood. Si elle était appliquée au ratio de 1,25 case par logement pour le secteur Harwood, cette norme permettrait de réduire de 1,6 ha la superficie du secteur Harwood consacrée au stationnement résidentiel. Par contre, afin de permettre une accessibilité universelle des aires de stationnement à cases réduites, il est suggéré de conserver quelques cases surdimensionnées pour les familles ou les personnes à mobilité réduite dont les besoins particuliers justifient des espaces de dégagement latéral plus importants.

D’autre part, la végétalisation des aires de stationnement, des toits, murs et pourtour des bâtiments diminue la formation des ICU. Dans le secteur Harwood, les superficies combinées des ICU couvrent 54 % du territoire (voir Figure 7). Ces mesures permettraient d’augmenter la réflectivité solaire des surfaces (albédo des surfaces) ou de diminuer les surfaces asphaltées ou pavées générant des ICU. À cet effet, la norme 3019-190 du Bureau de normalisation du Québec pourrait être utilisée afin de concevoir des aires de stationnement prévenant la formation d’ICU [36].

La plantation d’arbres permettrait aussi de renforcer le potentiel de déplacements actifs de tout le secteur [37, 38], en plus de favoriser la création d’un milieu de vie attrayant et d’un environnement de qualité, par la diminution des ICU et l’amélioration de la qualité de l’air. À cet effet, la norme LEED Canada pour l’habitation pourrait être utilisée. Cette norme recommande de planter des arbres afin qu’au moins 50 % des surfaces minéralisées (trottoirs, terrasses et entrées) situées à moins de 15 m des habitations soient couvertes d’ombre [39].

Enfin, la volonté clairement exprimée par la Ville de favoriser les déplacements actifs dans le secteur pourrait s’appuyer sur d’autres initiatives qui facilitent et sécurisent les déplacements piétonniers et cyclables. Au premier plan se retrouve l’aménagement de liens piétonniers entre tous les immeubles et la rue, en disposant notamment les aires de stationnement attenantes aux commerces à l’arrière de ceux-ci. Cet aménagement renforce la sécurité des piétons et favorise l’accessibilité universelle aux édifices du secteur.
Tableau 1 : Estimation de la superficie minimale du secteur Harwood occupée par des cases de stationnement résidentiel, selon le ratio de cases par logement, pour des cases de taille normale

<table>
<thead>
<tr>
<th>Nb de cases par logement</th>
<th>Nb de cases total</th>
<th>Superficie (ha) occupée</th>
<th>% du secteur Harwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>2 600</td>
<td>6,5</td>
<td>10,8 %</td>
</tr>
<tr>
<td>1,25</td>
<td>3 250</td>
<td>8,1</td>
<td>13,5 %</td>
</tr>
<tr>
<td>1,4</td>
<td>3 640</td>
<td>9,1</td>
<td>15,2 %</td>
</tr>
<tr>
<td>1,5</td>
<td>3 900</td>
<td>9,7</td>
<td>16,2 %</td>
</tr>
<tr>
<td>1,6</td>
<td>4 160</td>
<td>10,4</td>
<td>17,3 %</td>
</tr>
<tr>
<td>1,7</td>
<td>4 420</td>
<td>11,0</td>
<td>18,4 %</td>
</tr>
<tr>
<td>1,8</td>
<td>4 680</td>
<td>11,7</td>
<td>19,5 %</td>
</tr>
<tr>
<td>1,9</td>
<td>4 940</td>
<td>12,3</td>
<td>20,6 %</td>
</tr>
<tr>
<td>2,0</td>
<td>5 200</td>
<td>13,0</td>
<td>21,6 %</td>
</tr>
</tbody>
</table>

Note 1 : La superficie estimée pour une case de taille normale est de 25 m². Cette superficie comprend un espace de 5,50 m par 2,70 m pour stationner le véhicule et un espace de circulation de 2,70 m par 3,75 m.

Note 2 : Le nombre de cases de stationnement est calculé en fonction d’une hypothèse de construction de 2300 unités résidentielles s’additionnant aux 300 résidences déjà présentes.

Tableau 2 : Estimation de la superficie minimale du secteur Harwood occupée par des cases de stationnement résidentiel, selon le ratio de cases par logement, pour des cases de taille réduite

<table>
<thead>
<tr>
<th>Nb de cases par logement</th>
<th>Nb de cases total</th>
<th>Superficie (ha) occupée</th>
<th>% du secteur Harwood</th>
<th>Gain par rapport à la taille normale (ha)</th>
<th>Gain (% du secteur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>2 600</td>
<td>5,2</td>
<td>8,7 %</td>
<td>1,3</td>
<td>2,2 %</td>
</tr>
<tr>
<td>1,25</td>
<td>3 250</td>
<td>6,5</td>
<td>10,8 %</td>
<td>1,6</td>
<td>2,7 %</td>
</tr>
<tr>
<td>1,4</td>
<td>3 640</td>
<td>7,3</td>
<td>12,1 %</td>
<td>1,8</td>
<td>3,0 %</td>
</tr>
<tr>
<td>1,5</td>
<td>3 900</td>
<td>7,8</td>
<td>13,0 %</td>
<td>1,9</td>
<td>3,2 %</td>
</tr>
<tr>
<td>1,6</td>
<td>4 160</td>
<td>8,3</td>
<td>13,9 %</td>
<td>2,1</td>
<td>3,4 %</td>
</tr>
<tr>
<td>1,7</td>
<td>4 420</td>
<td>8,8</td>
<td>14,7 %</td>
<td>2,2</td>
<td>3,7 %</td>
</tr>
<tr>
<td>1,8</td>
<td>4 680</td>
<td>9,4</td>
<td>15,6 %</td>
<td>2,3</td>
<td>3,9 %</td>
</tr>
<tr>
<td>1,9</td>
<td>4 940</td>
<td>9,9</td>
<td>16,5 %</td>
<td>2,5</td>
<td>4,1 %</td>
</tr>
<tr>
<td>2,0</td>
<td>5 200</td>
<td>10,4</td>
<td>17,3 %</td>
<td>2,6</td>
<td>4,3 %</td>
</tr>
</tbody>
</table>

Note 1 : La superficie estimée pour une case de taille réduite est de 20 m². Cette superficie comprend un espace de 5,00 m par 2,50 m pour stationner le véhicule et un espace de circulation de 2,50 m par 3,00 m.

Note 2 : Le nombre de cases de stationnement est calculé en fonction d’une hypothèse de construction de 2300 unités résidentielles s’additionnant aux 300 résidences déjà présentes.
Figure 7 : Température de surface du secteur Harwood

Source : Température de surface (© CERFO 2012)
D’autre part, la connexité (ou interconnexion) des rues influence significativement les distances et les temps de parcours, donc le potentiel de déplacements actifs d’un quartier. Il est approprié de maximiser l’interconnexion des réseaux piétonnels et cyclables au sein du secteur Harwood et avec les quartiers voisins. À ce titre, une amélioration des liens piétonniers et cyclables entre le secteur Harwood et le quartier Dorion-Gardens désenclaverait ces deux quartiers séparés par une voie ferrée et une autoroute, tout en offrant une alternative aux déplacements en voiture.

Par exemple, il est suggéré d’aménager deux passages reliant le futur îlot Pasold à la rue Valois, le premier entre l’avenue du Curé-David et la 4e avenue, le second à l’extrémité de l’avenue Besner. Ceci permettrait à plus de 600 ménages du quartier Dorion-Gardens d’accéder rapidement à pied au secteur commercial du boulevard Harwood et à 400 ménages supplémentaires (environ 1 040 personnes) de s’y rendre à vélo en moins de 15 minutes. En plus d’améliorer l’accès aux commerces et services du boulevard Harwood pour les résidents du quartier Dorion-Gardens, ces passages permettraient aux résidents du secteur Harwood d’accéder plus rapidement aux infrastructures de sport et loisir du quartier Dorion-Gardens. La Figure 10 illustre le territoire qui pourrait être parcouru en moins de 15 minutes à pied ou à vélo selon la construction ou non des passages.

La mise en place de ces liens piétonniers et cyclables nécessiterait la construction d’un ou deux tunnels, tels que celui aménagé entre l’avenue Saint-Charles et la rue Valois (voir Figure 8). Toutefois, à la différence de celui-ci, il serait préférable d’aménager des tunnels de forme arquée offrant un meilleur éclairage naturel et une amélioration de la sécurité pour ses utilisateurs [40]. La Figure 9 illustre la différence entre les tunnels de forme rectangulaire et arquée.
Figure 10 : Territoire accessible en moins de 15 minutes à pied ou à vélo, avec ou sans passage sous la voie ferrée et l’autoroute
Aménagement des rues

Une analyse des aménagements actuels révèle l’absence ou la désuétude des infrastructures piétonnières et cyclables dans l’ensemble du secteur Harwood. En plus de diminuer le potentiel de déplacements actifs de l’ensemble du secteur, ce déficit en infrastructure entraîne une augmentation des risques de blessures et décès chez les piétons et cyclistes y circulant. Dans cette perspective, une planification intégrée des déplacements de tous les usagers de la route, incluant piétons et cyclistes, apparaît prioritaire avec le projet de réaménagement du secteur Harwood. Une telle planification permettrait à la fois d’augmenter le potentiel de déplacements actifs et de renforcer la sécurité des personnes les plus vulnérables, telles que les enfants, les aînés ou toute autre personne souffrant d’une limitation (motrice, visuelle, auditive ou intellectuelle).

Afin de proposer des aménagements pouvant remédier à cet état de fait, les rues du secteur Harwood sont subéquemment analysées en fonction de leurs caractéristiques, telles que leur largeur et leur nature résidentielle ou commerciale, afin de proposer des aménagements permettant un partage harmonieux entre les usagers des modes de transport motorisé et actif. Ces derniers nécessitant un cadre bâti convivial et sécuritaire, les infrastructures routières, piédestres et cyclables nécessaires à l’atteinte de cet objectif sont préalablement présentées.

Réseau routier

Il est recommandé d’aménager le réseau routier en fonction des besoins de tous les usagers de la route et de donner priorité aux usagers plus vulnérables, comme les piétons et les cyclistes. La vitesse d’un véhicule influence directement la gravité des blessures pour un piéton lors d’un impact. Alors que la probabilité qu’il survive à une collision avec un véhicule circulant à 30 km/h est de 90 %, elle chute à 50 % à 48-50 km/h et à seulement 15 % à 64 km/h [41-48]. Pour réduire la vitesse, la signalisation seule ne peut garantir que les automobilistes respecteront la vitesse affichée, et les interventions policières étant trop ponctuelles pour s’en assurer, il faut que la configuration des rues soit cohérente avec la vitesse affichée.

La largeur des rues et des voies de circulation doit correspondre aux normes de conception requises par leur niveau hiérarchique (local, collectrice, route) à l’intérieur du réseau routier. En ajustant ainsi la largeur des rues, les conducteurs adapteront leur conduite à leur environnement et réduiront leur vitesse. Ainsi, une route étroite pourra davantage réussir à limiter les vitesses qu’une rue plus large. Sur les rues locales et collectrices, il est recommandé de concevoir des voies d’une largeur de 3 m à 3,5 m, variant en fonction du débit et de la présence de stationnement. Il est donc possible de concevoir des voies à 3 m, s’il y a présence de stationnements sur la rue. Les voies de circulation d’une largeur de 3,5 m à 3,7 m, même si elles sont souvent aménagées sur des rues locales ou collectrices, constituent plutôt la norme pour des voies de routes régionales ou d’autoroutes où la vitesse affichée est de 70 km/h à 100 km/h [49].

Pour contribuer au rétrécissement des voies de circulation et améliorer la sécurité, il est recommandé d’aménager des mesures physiques modifiant la perception des conducteurs et les incitant à ralentir, telles que des trottoirs et des saillies de trottoir, des îlots centraux et des chicanes (voir Figure 11).
Figure 11 : Secteur visant à limiter la vitesse à 30 km/h, Candiac

Source : DSP Montérégie

Trottoirs et sentiers pédestres

Pour soutenir le potentiel piétonnier de tout le secteur, les différents commerces et services devraient tous être reliés aux immeubles résidentiels par des trottoirs continus d’une largeur minimale de 1,8 m. Les segments de rues à fort débit de piétons devraient quant à eux être munis de trottoirs de 2,1 m et plus afin de permettre une circulation fluide ainsi qu’aux personnes à mobilité réduite de manoeuvrer sécuritaires et en tout confort. Aussi, l’ajout de bandes végétalisées entre le trottoir et la rue rehausse le confort et la sécurité des piétons, en plus de réduire la formation des ICU (voir un exemple d’ilot végétalisé à la Figure 12). De plus, la plantation d’arbres à même ces bandes augmente le couvert d’ombrage pour les piétons et incite les automobilistes à réduire leur vitesse par la diminution de leur champ visuel [29, 50-52]. Pour leur assurer une irrigation suffisante, les arbres nécessitent une bordure d’une largeur minimale de 2,75 m, ou de 1,2 m lorsqu’ils sont plantés sous une grille [40]. En outre, ces bandes végétalisées limitent la formation de dénivelés aux entrées charretières en permettant le maintien d’un corridor horizontal favorable aux déplacements des personnes à mobilité réduite (voir Figure 13). Pour faciliter les passages en fauteuil roulant et le croisement de piétons, ce corridor sans dénivellement devrait être minimalement d’une largeur de 1,5 m. Les descentes de trottoir devraient quant à elles comprendre une bordure de 13 mm par rapport à la rue. En saison hivernale, le déneigement et le déglaçage des trottoirs et voies d’accès sont essentiels afin de favoriser la marche et prévenir les chutes.

Figure 12 : Exemple d’îlot végétalisé à une intersection, Bromont

Source : DSP Montérégie

Figure 13 : Dénivelé dans la bordure du trottoir

Source : Institut Nazareth et Louis-Braille / Société Logique (2014) [53]

Intersections et passages piétonniers

Aux intersections et aux autres endroits jugés appropriés, des avancées de trottoir accompagnées de passages piétonniers peints au sol peuvent être aménagées pour renforcer la sécurité et faciliter les déplacements. En plus d’indiquer une priorité de passage, ces aménagements réduisent les distances à
franchir pour les piétons et contraignent les automobilistes à manœuvrer avec plus de prudence dans ces endroits plus étroits. Les Figure 14 et Figure 15 présentent des exemples d’avancées de trottoirs munies d’une traverse piétonnière.

Figure 14 : Exemple d’avancées de trottoir au passage jaune, Granby

![Figure 14](image1)

Source : DSP Montérégie

Figure 15 : Exemple d’avancées de trottoir au passage jaune, Bedford

![Figure 15](image2)

Source : DSP Montérégie

Pour permettre aux personnes ayant une déficience visuelle de circuler librement sur des trottoirs bordés d’îlots végétalisés, des bandes doivent être aménagées afin d’indiquer la voie à suivre et pouvoir détecter les emplacements de traverse. De plus, pour assurer leur sécurité, les descentes de trottoir (bateaux pavés) devraient toutes être munies de tuiles podotactiles peintes en jaune afin de leur signifier la présence d’une intersection ou d’une traverse piétonnière. La Figure 16 illustre les critères de conception d’un bateau pavé à une intersection et la Figure 17 présente un exemple de bateau pavé ainsi aménagé. Pour maximiser la durabilité et la visibilité de ces surfaces avertissantes, la fonte peinte en jaune est le matériau à privilégier.

Figure 16 : Configuration du bateau pavé, avec surface avertissante détectable tactilement et visuellement

![Figure 16](image3)

Source : Institut Nazareth et Louis-Braille / Société Logique (2014) [53]
Figure 17 : Surface avertissante détectable tactilement et visuellement

![Surface avertissante détectable tactilement et visuellement](image)

Source : INLB/Société Logique [53]

Pour améliorer la visibilité et la sécurité des piétons, certaines intersections du secteur Harwood pourraient être recouvertes de pavé texturé. Tout en ne nuisant pas à la circulation motorisée, ce type de pavé signifie aux automobilistes qu’ils traversent une zone où les piétons ont priorité de passage. Les Figure 18 et Figure 19 présentent des exemples d’intersection texturée. Pour assurer la sécurité des personnes à mobilité réduite, le pavé texturé doit être le plus uniforme possible, avec des joints d’une largeur maximale de 10 mm et une bordure de 13 mm de hauteur.

Afin de renforcer la sécurité des piétons aux intersections, il est recommandé d’installer des feux de circulation offrant une protection complète durant tout le cycle, ou à tout le moins pendant la première phase du cycle. Ceci permet une traversée en toute sécurité pour les personnes à mobilité réduite, dont la durée minimale est de 0,9 m par seconde (0,9 m/s) [54]. À défaut de pouvoir offrir un temps de traverse assez long, un refuge central permettant un arrêt sécuritaire et une traversée en deux temps est alors requis. De plus, les virages à droite sur feu rouge (VDFR) devraient être interdits à une intersection comprenant un feu pour piétons, puisqu’ils augmentent de plus de trois fois les risques de collision pour ces derniers [55]. Les risques sont aussi accrus en présence d’une voie cyclable.

Figure 18 : Intersection texturée, Mont-Saint-Hilaire

![Intersection texturée, Mont-Saint-Hilaire](image)

Source : DSP Montérégie

Figure 19 : Intersection surélevée et texturée

![Intersection surélevée et texturée](image)

Source : National Association of City Transportation Officials [56]
Mobilier urbain et placettes

L’ensemble des rues du secteur Harwood devrait être muni d’un éclairage, assuré par des lampadaires installés en bordure des trottoirs, permettant d’améliorer la visibilité et le confort des piétons ainsi que de renforcer l’esthétisme des lieux. Pour assurer un éclairage suffisant des rues et lieux publics, une intensité lumineuse de 5 lux est suffisante sur les voies peu fréquentées alors qu’une intensité de 20 lux est recommandée sur les voies achalandées, permettant alors de percevoir le visage d’une personne à une distance de 20 m [40]. Afin de bien éclairer les trottoirs et de contribuer à l’esthétisme du secteur, les lampadaires ne devraient pas dépasser 6 m de hauteur [40]. Pour améliorer la sécurité et le sentiment de sécurité, il est également préférable d’éliminer tout obstacle entravant le champ de vision et d’éclairer les endroits obscurs permettant à un individu de s’y cacher.

Outre les lampadaires, l’installation de pièces de mobilier urbain permettant aux piétons de faire des haltes rehausse également le potentiel de déplacements actifs de tout le secteur. En ce sens, l’aménagement de placettes situées à intervalle de 400 m sur les trajets fréquemment utilisés et comprenant par exemple un ou quelques bancs, une table, une poubelle et étant agrémentées d’arbres et de fleurs (voir Figure 20) offre plus de confort et de sécurité aux piétons vivant avec des limitations motrices en plus de favoriser les contacts sociaux formels et informels entre citoyens [57-61]. Ce type de placettes pourrait être aménagé aux endroits jugés appropriés, tels qu’à proximité des arrêts d’autobus, en bordure du futur corridor actif de l’îlot Pasold ou sur de petits terrains vacants.

Réseau cyclable

Pour soutenir le potentiel de déplacements à vélo dans le secteur Harwood, le réseau cyclable doit favoriser un accès convivial et sécuritaire aux principales destinations utilitaires présentes sur le territoire, telles que les épiceries, les pharmacies, les parcs, la gare de train, les écoles et les principaux pôles d’emplois. L’observation du réseau existant révèle que celui-ci est toutefois limité et incomplet. La voie cyclable de la Route verte reliant Pincourt à Vaudreuil-Dorion est discontinue entre le pont Taschereau et la route 338 puisqu’elle ne reprend qu’à l’intersection des rues Saint-Jean-Baptiste et De Lotbinière. La bande bidirectionnelle sur chaussée qui est aménagée sur la rue Saint-Charles s’interrompt avant de rejoindre le boulevard Harwood. Même si ces deux pistes permettent un accès à quelques commerces, les principales destinations utilitaires situées sur le boulevard Harwood demeurent inaccessibles. Après la transformation de l’actuelle A-20 en boulevard urbain, une révision complète du réseau cyclable corriger la situation observée et rehaussera le potentiel de déplacements actifs et sécuritaires dans le secteur. La Figure 21 présente le réseau cyclable actuel et les tracés proposés pour le secteur Harwood.
Figure 21 : Réseau cyclable actuel et proposé pour le secteur Harwood et ses environs
De manière générale, il est recommandé d’aménager des bandes unidirectionnelles d’une largeur minimale de 1,5 m. Étant moins sécuritaires, les voies bidirectionnelles sont à éviter parce qu’elles amènent les cyclistes à circuler en sens contraire à la circulation automobile et augmentent de 3 à 12 fois les risques de collisions aux intersections [62-65]. En présence de stationnement sur la rue, il est recommandé de positionner la bande cyclable entre la voie de circulation automobile et les espaces de stationnement afin d’accroître la visibilité des cyclistes. Toutefois, si la bande cyclable est aménagée entre un espace de stationnement et un trottoir, une interdiction de stationnement sur une distance minimale de 20 m devrait être formulée en amont de chaque intersection afin d’assurer la visibilité des cyclistes. Lorsqu’une piste cyclable en site propre est aménagée, c’est-à-dire permettant aux cyclistes de circuler à l’écart des véhicules (hors chaussée), celle-ci doit être d’une largeur minimale de 3 m et comprendre des aménagements sécuritaires assurant une bonne visibilité aux intersections [54]. Les pistes multi-usagers d’une largeur de 3,5 m à 4 m, c’est-à-dire servant à plusieurs types d’usagers actifs (piétons, cyclistes, patineurs ou autres), sont recommandées seulement lorsque les débits d’usagers sont faibles puisque les risques d’accidents s’accroissent avec l’augmentation des débits [63, 66]. Enfin, il est important de noter que des bandes cyclables mal conçues sont plus dangereuses qu’une chaussée sans aménagement dédié, particulièrement aux intersections, puisqu’elles peuvent créer de la confusion entre les automobilistes et les cyclistes et entraîner des comportements imprévisibles potentiellement dangereux.

Il est aussi pertinent d’installer des cartes et des panneaux de signalisation afin de faciliter l’identification des trajets à emprunter pour accéder à certaines destinations recherchées par les cyclistes, telles que les parcs, la gare de train et la future halte cycliste de l’Île-Bray (voir Figure 22 et Figure 23). La présence de supports à vélo à proximité des commerces, de la gare de train, dans les parcs et places publiques permettrait aussi d’encourager les déplacements actifs [67]. Dans les secteurs résidentiels, le ratio minimum recommandé de stationnements à vélo est d’une place par nouveau logement. Sur les rues commercantes, le ratio minimum est de cinq places par 100 m de façade [40]. Idéalement, ces supports à vélo devraient prendre place à l’intérieur d’espaces couverts à l’abri des intempéries et être situés à proximité des entrées principales. Lorsqu’ils sont installés sur les trottoirs, les supports à vélo doivent être disposés de manière à laisser un corridor libre de tout obstacle d’au moins 1,5 m afin de ne pas nuire à la circulation des piétons, notamment ceux à mobilité réduite ou vivant avec une déficience visuelle.

Figure 22 : Signalisation cyclable pour les lieux d’intérêt

Source : Lapointe, S. [68]
Figure 23 : Carte du réseau cyclable, Ville de Québec

Source : Lapointe, S. [68]

Boulevard Harwood

Le boulevard Harwood fait actuellement office d’autoroute (A-20) reliant Montréal à la province voisine de l’Ontario et sur laquelle près de 45 000 passages quotidiens, dont 4 000 passages de camions, sont enregistrés. Toutefois, le parachèvement prochain de l’A-20 se traduira par une baisse marquée du débit de véhicules motorisés sur le boulevard Harwood et permettra sa conversion en véritable boulevard urbain. Cette transformation majeure permettra à la ville et aux citoyens de se réapproprier cette portion du centre-ville et de réaménager celui-ci.

Considérant la présence de nombreux commerces et services sur le boulevard Harwood et les possibilités qu’offre le centre-ville pour les déplacements actifs et collectifs, un aménagement transformant le boulevard Harwood en une artère contribuant à la qualité de vie du secteur est proposé. Cette proposition de reconfiguration vise à donner un espace notable aux piétons et au transport collectif afin de répondre aux besoins des futurs citoyens qui résideront à proximité.

Dans un premier temps, un aménagement de voies réservées conjointes pour autobus et vélos est proposé. La fréquence relativement faible des passages d’autobus permettrait un partage de la voie réservée avec les cyclistes pendant les heures de pointe. Une largeur de voie réservée de 4,5 m permettrait aux conducteurs d’autobus de dépasser les cyclistes tout en demeurant dans la voie réservée (voir Figure 24). Un marquage au sol et l’installation de panneaux suffiraient pour indiquer la présence de cyclistes dans ce corridor. De plus, lorsque le stationnement est autorisé sur le boulevard à l’extérieur des périodes de pointe, cette largeur assure aux cyclistes un corridor de 2 m à 2,4 m libre d’obstacles entre les voitures stationnées et celles en circulation.

Figure 24 : Voie réservée aux autobus permettant une cohabitation avec les vélos

Source : Institut belge pour la sécurité routière, 2013. [69]

Il est à noter que le nombre de manœuvres de dépassement qu’auront potentiellement à effectuer les conducteurs d’autobus sera variable en fonction de la fréquence des passages, mais aussi de la distance des arrêts. Si le service est aux dix minutes et plus, cela signifie qu’il n’y aura qu’un maximum de six autobus à l’heure. De plus, la vitesse des cyclistes et des autobus étant relativement
similaire en milieu urbain, cela aura pour effet de limiter les dépassements si les arrêts sont rapprochés les uns des autres. Si les arrêts sont plutôt éloignés, les distances plus grandes d’accélération amèneront les autobus à atteindre plus de vitesse et à dépasser plus fréquemment des cyclistes.

Cet aménagement vise davantage les cyclistes expérimentés et ce sont ceux qui se déplacent pour des raisons utilitaires (travail, courses, etc.). Le cycliste de randonnée ou le cycliste moins expérimenté pourra emprunter la voie parallèle sur la rue Chicoine. Il est fortement conseillé lors de l’implantation d’un tel aménagement de bien former les chauffeurs d’autobus au partage de la chaussée, entre autres afin qu’ils soient en mesure de bien évaluer la distance qui les sépare des cyclistes lors des dépassements ainsi que de bien percevoir ces derniers lorsqu’ils se trouvent dans les angles morts de l’autobus. Aussi, une campagne de sensibilisation auprès des cyclistes facilitera le partage de la chaussée (par exemple via les journaux locaux, les clubs cyclistes locaux, etc.) en leur rappelant les pratiques sécuritaires, telles que l’attente derrière l’autobus aux arrêts.

Le service d’autobus servant principalement aux déplacements entre Montréal et Vaudreuil-Dorion, les voies réservées pourront alors être transformées en zones de stationnement en période hors pointe afin de faciliter l’accès aux commerces et services ayant pignon sur le boulevard Harwood.

Pour compléter l’aménagement, des abribus et des arbres en rangée pourraient être insérés entre la rue et les trottoirs pour offrir plus de confort et d’ombrage aux usagers du transport collectif et aux piétons. L’ajout de ces éléments contribue à apaiser la circulation motorisée en réduisant la largeur perçue du boulevard. Considérant l’emprise disponible, une bande de 6,9 m de large peut être aménagée de chaque côté afin d’accueillir les trottoirs et le mobilier urbain (bancs et lampadaires). La Figure 25 illustre la proposition de réaménagement formulée pour le boulevard Harwood.

Afin de contribuer à l’animation du quartier, il est possible d’aménager des terrasses en façade des commerces. Dans ce cas, il sera toutefois important de conserver un corridor piétonnier d’au moins 1,5 m afin de permettre la libre circulation des personnes à mobilité réduite ou ayant une déficience visuelle [53].

Figure 25 : Proposition de réaménagement du boulevard Harwood
Carrefour giratoire sur le boulevard Harwood

Lors de la construction du tronçon manquant de l’A-20, le ministère des Transports du Québec (MTQ) prévoit aménager un carrefour giratoire sur le boulevard Harwood, à l’angle de la rue Saint-Charles, afin de servir de bretelle d’accès de l’autoroute et annoncer l’entrée dans un milieu de vie. Bien que ce genre d’aménagement routier ait démontré qu’il puisse améliorer la sécurité automobile comparativement à une intersection régulière, en réduisant de 32 à 8 les points de conflit (voir Figure 26) ainsi que la vitesse et la gravité des collisions, il n’en est pas de même pour la sécurité des piétons et des cyclistes. En effet, la cohabitation entre les usagers motorisés et non motorisés présente plusieurs enjeux de sécurité et de fluidité si ces derniers sont trop nombreux à le traverser [70].

Afin de réduire les risques et enjeux associés aux carrefours giratoires, l’aménagement d’un giratoire à une voie est préférable à un giratoire à deux voies. Le rayon de virage plus étroit d’un carrefour giratoire à une voie amène en effet les voitures à davantage réduire leur vitesse. Ceci engendre une meilleure cohabitation avec les autres usagers, en permettant notamment aux cyclistes les plus expérimentés de partager la chaussée avec les véhicules motorisés. Les traversées se révèlent également plus sécuritaires dans les giratoires à une voie puisque la distance pour traverser l’unique voie est plus courte pour les piétons et les contacts visuels avec les automobilistes sont plus faciles. La Figure 27 présente l’aménagement modèle des carrefours giratoires à une et deux voies. Enfin, considérant tous les risques que représente ce type d’aménagement pour les personnes à mobilité réduite et celles vivant avec une déficience visuelle, la consultation d’experts lors des phases de conception et de réalisation est nécessaire. À ce titre, les experts de l’Institut Nazareth et Louis-Braille (INLB) peuvent être consultés.

Figure 26 : Comparaison des points de conflit entre un carrefour giratoire et une intersection

Point de conflit : un emplacement où les passages de deux véhicules, ou d’un véhicule et d’un cycliste ou un piéton, se croisent ou s’entrecoupent.

Source : Ministère des Transports du Québec [71]
Figure 27 : Aménagement des carrefours giratoires à une et deux voies

Source : Vélo Québec [40]

Rue Chicoine
La rue Chicoine, parallèle et à proximité du boulevard Harwood, semble être la rue la plus appropriée pour accueillir un aménagement cyclable permettant une circulation est-ouest. La voie cyclable prévue sur le boulevard Harwood étant dédiée aux cyclistes plus aguerris à la présence des véhicules motorisés, la rue Chicoine faciliterait un partage de la chaussée plus convivial entre ses utilisateurs étant donné les faibles débits de voitures et camions prévus sur celle-ci. Considérant les aménagements actuels sur la rue Chicoine et les largeurs de chaussée différentes des segments de rue situés de part et d’autre de la rue De Lotbinière, deux propositions sont formulées.

Pour assurer une meilleure sécurité aux cyclistes, la proposition élaborée pour le segment situé à l’ouest de la rue De Lotbinière prévoit l’aménagement de deux bandes cyclables unidirectionnelles sur chaussée. L’aménagement d’une bande tampon de 0,5 m pour chaque voie cyclable protège les cyclistes de la circulation automobile et des portières de véhicules stationnés. L’aménagement de deux trottoirs de 1,8 m maximise pour leur part le confort et la sécurité des piétons circulant dans ce secteur résidentiel à densité relativement forte. La Figure 28 détaille la proposition complète de réaménagement pour le segment ouest de la rue Chicoine.

La proposition d’aménagement pour la rue Chicoine, pour le segment situé à l’est de la rue De Lotbinière, prévoit la conservation des deux bandes vertes sur lesquelles plusieurs arbres matures sont actuellement présents. Pour respecter la largeur de la chaussée aménageable, une voie cyclable est proposée en direction est alors qu’une chaussée désignée est recommandée en direction ouest. Afin de permettre la construction de trottoirs d’une largeur suffisante, soit 1,8 m, les bandes vertes doivent quant à elles être légèrement rétrécies. La Figure 29 détaille la proposition complète de réaménagement pour le segment est de la rue Chicoine.
Rue De Lotbinière

La rue De Lotbinière, servant actuellement de route régionale, pourrait changer de vocation à la suite du parachèvement de l’A-20 et de la transformation du boulevard Harwood. Ce faisant, la Ville pourrait alors réaménager l’emprise de 24,5 m allouée à cette rue pour permettre un meilleur partage entre piétons, cyclistes et automobilistes. En prévision de la densification résidentielle à venir sur un long segment de la rue De Lotbinière, le réaménagement de la rue permettrait de mieux rééquilibrer les espaces dédiés à tous ses usagers et de mettre en place des mesures d’apaisement de la circulation.

L’emprise de la rue étant considérable, il est possible d’aménager deux bandes cyclables unidirectionnelles, protégées des portières par des bandes tampons, en plus d’offrir un environnement qui soit à la fois sécuritaire et convivial aux piétons. Le rétrécissement des voies de circulation, de même que la plantation...
d’arbres, améliorent l’esthétisme des lieux et de réduisent le champ visuel des conducteurs, favorisant alors une diminution de leur vitesse.

La Figure 30 détaille la proposition complète de réaménagement de la rue De Lotbinière.

Figure 30 : Proposition de réaménagement de la rue De Lotbinière

![Figure 30 proposition de réaménagement de la rue De Lotbinière](image)

Avenues de la Fabrique et Saint-Jean-Baptiste

Afin de relier les secteurs situés de part et d’autre de la voie ferrée et d’assurer des déplacements sécuritaires pour les piétons et cyclistes empruntant une trajectoire nord-sud, le réaménagement des avenues de la Fabrique et Saint-Jean-Baptiste est proposé. La piste cyclable aménagée sur l’avenue Saint-Charles se limitant au secteur situé au nord de la voie ferrée, sa connexion à l’avenue de la Fabrique pour ensuite se poursuivre vers Saint-Jean-Baptiste permettrait aux cyclistes de rejoindre de façon plus sécuritaire la Route verte. Afin de relier les aménagements proposés pour la Route verte, il est suggéré d’aménager des bandes cyclables unidirectionnelles sur les avenues de la Fabrique et Saint-Jean-Baptiste. Pour assurer une meilleure sécurité pour les cyclistes, les cases de stationnement présentes sur l’avenue de la Fabrique devraient être enlevées. Les Figure 31 et Figure 32 détaillent les propositions complètes de réaménagement pour les avenues de la Fabrique et Saint-Jean-Baptiste.

Selon la planification municipale, la seconde portion de l’avenue Saint-Jean-Baptiste, soit celle située au sud de ladite intersection, se transformera quant à elle en voie de circulation à sens unique vers le sud. Afin d’assurer une continuité avec les aménagements cyclables précédemment discutés, des bandes unidirectionnelles devraient être aménagées de part et d’autre de l’avenue. La réduction de la chaussée à une seule voie de circulation offrira aussi un meilleur environnement aux piétons avec la possibilité d’aménager un trottoir de chaque côté de l’avenue, en plus d’y apaiser la circulation. La Figure 33 détaillle la proposition complète de réaménagement pour la portion de l’avenue Saint-Jean-Baptiste située au sud de l’intersection avec l’avenue Saint-Charles.

L’intersection du boulevard Harwood et de l’avenue Saint-Henri étant sujette à un réaménagement majeur, les propositions ci-dessus devront donc être réévaluées advenant la construction du carrefour giratoire.
Figure 31 : Proposition de réaménagement de l’avenue de la Fabrique

Figure 32 : Proposition de réaménagement de l’avenue Saint-Jean-Baptiste, segment situé au nord de l’intersection avec l’avenue Saint-Charles
Figure 33 : Proposition de réaménagement de l’avenue Saint-Jean-Baptiste, segment situé au sud de l’intersection avec l’avenue Saint-Charles

Îlot Pasold

Les six rues d’orientation nord-sud, pour lesquelles des emprises d’environ 14 m sont prévues, permettraient l’aménagement de voies de circulation à sens unique entourées de bandes vertes et de trottoirs. Puisque le corridor dédié aux déplacements actifs prévu au centre du quartier assure un accès cyclable sécuritaire, il n’apparaît pas nécessaire d’en aménager sur les rues. La Figure 34 déétale la proposition complète d’aménagement pour les rues d’orientation nord-sud.
Figure 34 : Proposition d’aménagement des rues d’orientation nord-sud de l’Îlot Pasold

Selon la planification municipale, la rue d’orientation est-ouest prévue au nord de l’Îlot Pasold aura une emprise d’environ 12 m. Étant accolé au talus, seul le trottoir situé du côté des résidences suffira pour assurer des déplacements piétonniers sécuritaires. Considérant que cette rue est la seule voie pour les déplacements est-ouest à l’intérieur du quartier, exception faite du corridor piétonnier, la majorité de son emprise devra être occupée par ces deux voies de circulation. Malgré tout, une bande verte pourrait être aménagée du côté sud de la rue. Du côté nord, des arbres pourraient être plantés afin de rehausser le verdissement du secteur et offrir un meilleur écran visuel permettant de masquer le mur antibruit devant y être construit. La Figure 35 détaillle la proposition complète d’aménagement pour la rue d’orientation est-ouest.

Enfin, l’aménagement d’un corridor actif pour piétons et cyclistes au centre de l’Îlot Pasold permettra la mise en place d’une longue bande verte dans ce secteur à densité résidentielle relativement élevée. De plus, considérant que les cours extérieures privées seront vraisemblablement limitées en nombre et en superficie dans ce quartier, ce corridor long de plusieurs centaines de mètres pourrait être aménagé à l’image d’un parc de voisinage afin de favoriser la création d’espaces de détente et les contacts sociaux entre voisins (voir Figure 36). Pour assurer la connexité et la sécurité de ce corridor aux intersections avec les rues d’orientation nord-sud, des traverses piétonnières surélevées pourraient être aménagées. Advenant la construction de tunnels ou de passerelles entre le quartier Dorion-Gardens et l’Îlot Pasold, leur connexion avec ce corridor piétonnier et cyclable rehausserait leur potentiel de déplacements actifs.
Figure 35 : Proposition d’aménagement de la rue d’orientation est-ouest de l’îlot Pasold

Figure 36 : Proposition d’aménagement du corridor actif de l’îlot Pasold
Secteur de la gare et du Vieux-Dorion

La gare de Dorion est une destination possédant le potentiel de générer des centaines, voire des milliers de déplacements quotidiens. Son accessibilité à partir du secteur Harwood est donc cruciale. L’accès à la gare étant contraint par les barrières formées de la voie ferrée et de la future A-20, l’aménagement des quelques voies d’accès existantes apparaît d’autant plus important. Ainsi, il devient nécessaire d’aménager le réseau de rues afin de permettre le déplacement convivial et sécuritaire des piétons et des cyclistes sur des distances minimales respectives de 1,2 km et 3 km, correspondant à environ 15 minutes de déplacement. La Figure 37 illustre le territoire situé à moins de 15 minutes de marche et de vélo de la gare Dorion et pour lequel une attention devrait être apportée.

Dans le secteur du Vieux-Dorion, même si des aménagements cyclables ne sont pas requis sur toutes les rues étant donné les faibles débits de circulation observés, l’aménagement d’une chaussée désignée sur les rues Brodeur, Vaudreuil et de l’Église apparaît nécessaire afin de relier la voie cyclable de l’avenue Saint-Charles à la gare de train de Dorion et d’identifier la présence accrue de cyclistes sur ces rues. Afin d’améliorer la sécurité des cyclistes circulant sur l’avenue Saint-Charles, il serait recommandé de transformer l’actuelle bande directionnelle en deux bandes unidirectionnelles. D’autre part, des changements devraient être apportés à l’aménagement présent sur la rue Valois, entre l’accès à la passerelle menant à la gare et le tunnel menant au sud de la voie ferrée, puisqu’un problème de visibilité réduisant la perception réciproque entre les usagers motorisés et non motorisés y a été observé (voir Figure 38).

Figure 37 : Territoire accessible en moins de 15 minutes à pied ou à vélo à partir de la gare Dorion
Autoroute 20

Selon la planification municipale du projet de réaménagement du secteur Harwood, la future A-20 sera située à près de 40 m du développement résidentiel de l’Îlot Pasold et à près d’une cinquantaine de mètres des résidences existantes situées au nord de la voie ferrée. Considérant les volumes potentiellement importants de véhicules routiers qui transiteront sur la nouvelle A-20, celle-ci pourrait générer des nuisances sonores pour les résidents qui habiteront à proximité. Afin de limiter l’intensité sonore à des niveaux acceptables et non néfastes pour la santé et la qualité de vie des citoyens concernés, soit à des niveaux enregistrés à la façade des immeubles de 45 dBA le jour et de 40 dBA la nuit [72], différentes actions peuvent être entreprises.

D’une part, considérant l’espace limité pour constituer une zone tampon adéquate entre la future A-20 et les résidences projetées et existantes, la construction d’un écran acoustique apparaît nécessaire. La volonté municipale d’implanter un talus ainsi qu’un mur antibruit entre l’A-20 et le futur développement résidentiel situé au sud de l’A-20 est à saluer (voir Figure 39). Toutefois, il apparaît indispensable qu’un tel aménagement soit également construit du côté nord de l’A-20 où des résidences sont déjà présentes. De plus, pour protéger adéquatement les résidents vivant à proximité de l’A-20, il est important que les protections acoustiques nord et sud couvrent l’ensemble des secteurs résidentiels.
Aussi, la qualité du bâti atténue le bruit perçu à l’intérieur des résidences. La disposition des chambres à coucher sur les façades opposées à la source de bruit peut aussi atténuer ses impacts potentiellement néfastes sur le sommeil. Ainsi, une attention particulière devrait être portée aux propriétés insonorisantes des matériaux de construction autorisés et aux plans architecturaux. D’autre part, considérant l’influence de la vitesse des véhicules motorisés sur les niveaux de bruit produit, il apparaît souhaitable de prendre en considération la vitesse autorisée sur la future A-20 pour limiter le bruit émis par celle-ci. À ce titre, une réduction de la vitesse des voitures de 100 km/h à 70 km/h diminue de moitié l’intensité sonore émise (3,7 dBA) [73]. Afin de réduire l’exposition des résidents à cette nuisance une vitesse autorisée de 70 km/h devrait être préconisée sur l’A-20.

Par ailleurs, les niveaux d’émission des polluants produits par les véhicules à essence étant aussi influencés par leur vitesse, une limitation de la vitesse autorisée sur l’A-20 permettrait également de réduire leur production. À titre d’exemple, voir Figure 40, une diminution de la vitesse de 100 km/h à 70 km/h permet de réduire de moitié les émissions d’oxydes d’azote (NOx) et de monoxyde de carbone (CO), tous deux connus pour avoir des effets néfastes sur la santé [74].

Considérant les effets de la vitesse sur l’intensité de bruit et le niveau d’émissions des polluants, il est privilégié de limiter la vitesse à 70 km/h. Des pourparlers entre la Ville et le ministère des Transports du Québec (MTQ) devraient être entrepris afin de conserver la vitesse autorisée du tronçon de l’A-20 sur L’Île-Perrot à l’ensemble du secteur Harwood.

Figure 40 : Variation des niveaux d’émissions des polluants selon la vitesse moyenne d’une voiture à essence avec convertisseur catalytique

Remarque : les valeurs des oxydes d’azote (NOx) et des hydrocarbures (HC) ont été multipliées par 10 et celles du dioxyde de carbone (CO2) ont été divisées par 100.

Recommandations

1. Favoriser une densification du secteur Harwood et de l’aire TOD, notamment par un aménagement compact du territoire, pour soutenir le transport actif et collectif.

1.1. Comme prévu au Programme particulier d’urbanisme (PPU), densifier le secteur Harwood à la hauteur de 60 log/ha.

1.2. Viser une densité résidentielle brute minimale de 40 log/ha pour l’ensemble du secteur Harwood.

1.3. Afin d’atteindre les objectifs du Plan métropolitain d’aménagement et de développement (PMAD), soutenir une densification graduelle de l’ensemble de l’aire TOD jusqu’à ce qu’elle atteigne une densité résidentielle de 40 log/ha.

2. Limiter le nombre et la superficie des stationnements sur l’ensemble du secteur Harwood.

2.1. Mettre en place un ratio maximal de cases de stationnement plutôt qu’une norme minimale. Instaurer un ratio progressif de maximum 1,0 à 1,25 case/logement à l’intérieur de l’aire TOD et un maximum de 1,25 à 1,5 véhicule/logement pour le reste du secteur.

2.2. Diminuer la taille moyenne des cases de stationnement (passer de la taille standard de 2,7 m par 5,5 m à une taille réduite de 2,5 m par 5,0 m). Se faisant, conserver quelques cases plus larges pour les familles et les personnes à mobilité réduite.

2.3. Les stationnements en façade devraient être interdits et déplacés à l’arrière (ou sur le côté) du bâtiment ou en parallèle sur la rue.

3. Réduire les îlots de chaleur urbains en verdissant les surfaces minéralisées soit les abords de rues, les aires de stationnement et les murs et toits des immeubles.

3.1. Planter des arbres aux abords des rues afin d’offrir une couverture d’ombrage minimale de 50 % à proximité des zones résidentielles.

3.2. Construire des îlots végétalisés en bordure des trottoirs et des rues.

3.3. Aménager les aires de stationnement selon la norme 3019-190 du Bureau de normalisation du Québec.

4. Améliorer la connectivité des réseaux pour les déplacements à pied et à vélo.

4.1. Aménager deux tunnels arqués reliant la rue Marier à la rue Besner ainsi que l’avenue du Curé-David et la 4e Avenue.

4.2. S’assurer que tous les services et les commerces fréquemment visités ainsi que les parcs sont reliés aux différents secteurs résidentiels par un trottoir en bon état et sécuritaire en toute saison (déneigé et déglacé).

5. Lors de la réfection des rues, construire des trottoirs d’une largeur minimale de 1,8 m sur toutes les rues à faible débit et de minimalement 2,1 m sur celles à fort achalandage.

5.1. Aménager des abaissements de trottoir et des surfaces podotactiles à tous les passages piétonniers.

5.2. Aménager des bordures bétonnées et végétalisées entre le trottoir et la rue, lorsque l’espace le permet.

7. Aménager des avancées de trottoir à toutes les intersections où les débits de piétons et de véhicules motorisés sont élevés, notamment aux intersections rencontrées sur le boulevard Harwood, la rue De Lotbinière et l’avenue Saint-Jean-Baptiste.
8. Aménager des placettes en bordure des trottoirs sur les principales trajectoires empruntées par les piétons et à proximité des arrêts d’autobus.

9. Installer des feux piétons protégés à toutes les intersections du boulevard Harwood et aux autres jugées appropriées, telles que sur la rue De Lotbinière.

10. Si un carrefour giratoire devait être construit sur le boulevard Harwood, privilégier l’aménagement d’un giratoire à une voie.

11. Aménager des intersections texturées et surélevées aux intersections jugées appropriées, notamment à tous les croisements du corridor actif avec les rues de l’Îlot Pasold.

12. Étendre le réseau cyclable du secteur Harwood et de l’aire TOD afin d’augmenter son potentiel de déplacements actifs et sa sécurité.

12.3. Aménager des chaussées désignées sur la rue Brodeur et les avenues Vaudreuil et de l’Église pour relier la voie cyclable de l’avenue Saint-Charles à la gare de train.

13. Installer des supports à vélo à proximité de la gare de train, dans les parcs, les commerces et services, idéalement à l’abri des intempéries et à proximité des entrées principales.

13.1. Mettre en place un ratio minimal d’une place de stationnement à vélo par nouveau logement et de cinq places par 100 m de façade sur les rues commerçantes.

15. Réévaluer l’aménagement de l’avenue Saint-Charles, à proximité de l’embouchure nord du tunnel piétonnier, afin de faciliter et sécuriser la traverse des piétons et des cyclistes, possiblement par la pose d’un arrêt obligatoire.

16. Réaménager toutes les rues du secteur Harwood en favorisant la mise en place de mesures d’apaisement de la circulation, l’intégration de mobilier urbain et de lampadaires de 6 m et en maximisant la végétation, voir Figures 26 et 29 à 34.

17. Aménager les futures rues de l’Îlot Pasold en favorisant la mise en place de mesures d’apaisement de la circulation, l’intégration de mobilier urbain et de lampadaires de 6 m et en maximisant la végétation, voir Figure 34 et Figure 35.

18. Aménager le corridor actif de l’Îlot Pasold à l’image d’un parc de voisinage, c’est-à-dire en privilégiant des zones de détente et de rencontre pour les citoyens, voir Figure 36.

20. Privilégier une vitesse autorisée de 70 km/h sur la future A-20 afin de diminuer de moitié l’émission de bruit et des principaux polluants atmosphériques.
PARCS ET ESPACES VERTS URBAINS

Le projet de réaménagement du secteur Harwood prévoit une requalification majeure de l’aire commerciale actuelle en quartier mixte (commercial et résidentiel). La construction de plus de 2 000 nouveaux logements et l’arrivée de plusieurs milliers de résidents se traduiront en besoins de toutes sortes à combler, dont celui en parcs et espaces verts.

Considérant cette nouvelle réalité, il est ici question du nombre et de la superficie de parcs nécessaires pour répondre aux besoins de la population et des paramètres de leur aménagement. Auparavant, une synthèse des principales connaissances scientifiques sur les impacts des parcs et espaces verts sur la santé est rapportée.

Les impacts des parcs et espaces verts urbains sur la santé et ses déterminants

La présence de parcs et autres espaces verts urbains contribue à améliorer la santé et la qualité de vie des citoyens à de multiples niveaux, comme le résume la Figure 41. Du point de vue environnemental, les parcs et espaces verts permettent, grâce à leur flore, d’améliorer la qualité de l’air en produisant de l’oxygène et en séquestrant les particules, les poussières, les métaux lourds et l’ozone. Ils permettent de lutter contre les changements climatiques et les ICU en absorbant du dioxyde de carbone et en réduisant la température de l’air [58].

Du point de vue de l’état de santé physique et mentale, la présence et la superficie des parcs et espaces verts sont aussi associées à un meilleur état de santé perçu [75]. Une association bénéfique est également établie entre la présence de parcs et la santé mentale, notamment par le biais d’une diminution de la prévalence des troubles anxieux, de la dépression et du stress chez les personnes habitant à proximité [76, 77]. De plus, en termes de cohésion sociale, les parcs et espaces verts urbains constituent des lieux de rencontres propices aux relations sociales et à l’émergence de liens sociaux [78-80]. Ainsi, les personnes vivant à proximité d’espaces verts ressentent moins de solitude et jouissent généralement d’un meilleur soutien social [81].

La présence d’espaces verts est également associée à une augmentation de la marche et de l’activité physique. En effet, une étude européenne regroupant huit pays a démontré que les personnes vivant dans des environnements avec beaucoup de végétation pratiquent de l’activité physique trois fois plus souvent et ont 40 % moins de risques de souffrir d’embonpoint ou d’obésité [82]. Ces associations sont également observées chez les enfants [83]. Pour assurer leur utilisation optimale et maximiser leurs retombées sur la santé, les parcs doivent être sécuritaires et en bon état. Ils doivent également disposer d’équipements adéquats, tels que des aires de jeu appropriées aux différents âges des enfants, des sentiers, des bancs, des fontaines d’eau, des tables à pique-nique et des toilettes [84-86].

Enfin, lorsque les espaces verts s’accompagnent de jardins communautaires, la culture de petits lopins de terre contribue à la saine alimentation par l’accès à des fruits et légumes frais en été [87, 88]. L’approvisionnement à faible coût de ces aliments peut s’avérer particulièrement avantageux pour les personnes moins nanties, dont les capacités à se nourrir adéquatement sont limitées par un faible pouvoir d’achat [89].
Figure 41 : Principaux impacts des parcs et espaces verts urbains sur la santé et la qualité de vie
Impacts potentiels du projet de réaménagement du secteur Harwood

En regardant l’offre de parcs existants et prévus, cette section propose des analyses portant à la fois sur leur nombre et leur superficie, de même que sur la qualité de l’aménagement et de l’animation proposés.

Nombre et superficie des parcs et espaces verts

Pour favoriser la qualité de vie des citoyens et leur santé, les parcs et espaces verts doivent être suffisants en nombre et en superficie. Selon un standard internationalement reconnu, les besoins en parcs à l’échelle d’une ville correspondent à 2,5 ha par 1 000 habitants. Ce ratio se décline en termes de parcs urbains (2,0 ha/1 000 personnes) desservant l’ensemble d’une municipalité et les parcs de quartier et de voisinage (0,5 ha/1 000 personnes) aménagés pour les résidents d’un secteur limité.

Calculé pour le futur secteur Harwood et son potentiel de 6 500 résidents, le besoin en parcs de quartier et de voisinage représente une superficie combinée de 3,3 ha. Toutefois, considérant que les résidents du secteur Harwood et du quartier Bel-Air situé au sud partageront vraisemblablement leurs infrastructures de loisir et de détente, il apparaît pertinent de prendre en compte la population et les parcs présents dans le secteur compris entre les rues Chicoine et Trudeau. En ajoutant la population déjà présente dans ce dernier quartier, soit près de 3 600 personnes, le besoin potentiel en parcs de quartier et de voisinage pour l’ensemble des 10 100 personnes se chiffre à 5,1 ha.

Comme rapporté au Tableau 3, l’inventaire des parcs existants dans le secteur Harwood et au sud de celui-ci fait état de la présence de six parcs totalisant une superficie de 5,5 ha. En plus de ceux-ci, le projet de réaménagement prévoit la création de quatre nouveaux parcs dont les superficies combinées devraient couvrir près de 1,3 ha. En somme, les superficies totales de 6,8 ha de parcs de voisinage et de quartier existants et prévus apparaissent suffisantes pour combler le besoin estimé.

Outre le besoin exprimé en termes de superficie, les parcs de voisinage et de quartier doivent également être facilement accessibles par tous les citoyens. Afin de maximiser le potentiel d’activités physiques, de rencontres et de détente de ces parcs, les citoyens doivent pouvoir y accéder en cinq minutes de marche ou moins. Cette durée de déplacement correspondant à une distance de 400 m ou moins, les emplacements des parcs de quartier et de voisinage devraient en conséquence être répartis afin que leur aire d’influence combinée couvre l’ensemble du territoire d’une municipalité.

La Figure 42 illustre la zone au sein de laquelle les citoyens peuvent accéder à un parc de voisinage et de quartier en cinq minutes de marche ou moins, selon le caractère existant ou prévu des parcs. Cette carte démontre que l’accessibilité aux parcs, pour les futurs résidents du secteur Harwood, sera principalement assurée par l’aménagement des parcs prévus. Par ailleurs, en dépit des superficies jugées suffisantes, il apparaît pertinent d’aménager le futur corridor actif de l’Îlot Pasold tel un parc de voisinage, afin d’augmenter le nombre de lieux de rencontre et de détente pour les citoyens des environs.

1 Ce calcul est basé sur une hypothèse d’un total de 2 600 logements sur le territoire du secteur Harwood (85 ha) et d’un nombre moyen de 2,5 personnes par logement.
D’autre part, les infrastructures sportives se révèlent peu nombreuses dans le secteur observé, se limitant à un terrain de soccer, un terrain de baseball et une piscine extérieure. Il sera donc important d’assurer un accès aux infrastructures extérieures au quartier. À ce titre, les nombreuses infrastructures présentes dans le parc Dorion-Gardens, situé au nord du secteur Harwood, pourraient être plus facilement accessibles si un passage piétonnier et cyclable permettant de franchir la voie ferrée et la future A-20, était aménagé à l’ouest de l’îlot Pasold. De plus, le potentiel de développement résidentiel de la portion sud du quartier Bel-Air pourrait être une bonne occasion pour agrandir le parc Trudeau et offrir de nouvelles installations sportives aux résidents du secteur.

Tableau 3 : Liste des parcs existants et prévus dans le secteur Harwood

<table>
<thead>
<tr>
<th>Parcs existants</th>
<th>Superficie (en ha)</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabourin</td>
<td>0,7</td>
<td>Parc non aménagé situé à proximité de l’A-20; il possède actuellement un faible potentiel de détente.</td>
</tr>
<tr>
<td>Carré-Dorion</td>
<td>0,2</td>
<td>Parc comprenant du mobilier urbain et des aménagements floraux; à fort potentiel de détente.</td>
</tr>
<tr>
<td>Place Dumont</td>
<td>0,1</td>
<td>Petite place publique pouvant servir de lieu de rencontre lors des événements municipaux ou citoyens.</td>
</tr>
</tbody>
</table>
| Saint-Jean-Baptiste | 0,4 | Parc actuellement enclavé entre une école et un supermarché, difficilement accessible pour les citoyens.
| | | Sur la portion considérée, aucun aménagement ni mobilier urbain pouvant participer à l’animation du parc n’est présent.
| Bel-Air | 1,2 | Parc majoritairement consacré à un terrain de baseball; possède des jeux d’eau, mais peu de mobilier urbain. |
| Trudeau | 0,9 | Parc constitué exclusivement d’un terrain de soccer, aucun mobilier urbain n’est présent. |
| Stroud | 2,0 | Parc comprenant quelques modules de jeux pour enfants, mais majoritairement non aménagé. |

Sous-total 5,5

<table>
<thead>
<tr>
<th>Parcs prévus</th>
<th>Superficie (en ha)</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harwood – De Lotbinière</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Ranger – Harwood (nord)</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>Chicoine – Harwood (sud)</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>De Lotbinière – Lalonde</td>
<td>0,2</td>
<td></td>
</tr>
</tbody>
</table>

Sous-total 1,3

Total 6,8
Aménagement et animation dans les parcs et espaces publics

Au même titre que le nombre et la superficie des parcs, la qualité de leur aménagement et des activités offertes influencent leur potentiel de retombées sur la santé et la qualité de vie des citoyens. D’après les observations faites dans les parcs existants et l’information détenue sur les parcs prévus, leur potentiel d’aménagement et d’animation pourrait être amélioré pour offrir des lieux de rencontre et de socialisation plus conviviaux aux résidents des environs.

En plus de maximiser la présence d’arbres et d’ombrage, les parcs du secteur devraient offrir du mobilier urbain et des installations permettant de répondre aux besoins variés et évolutifs des résidents et de renforcer ainsi leur attractivité et potentiel d’utilisation. Le profil démographique des futurs résidents n’étant pas connu, l’aménagement de chaque parc devrait être adapté aux différents groupes d’âge (jeunes enfants, enfants, adolescents, adultes et personnes âgées) et offrir des bancs, des tables, des lampadaires, des supports à vélo, des fontaines d’eau, des abris ouverts et des terrains permettant la pratique d’activités libres ou organisées.

Les parcs étant des lieux de rencontre et de socialisation, ils sont tout désignés pour accueillir des initiatives de loisir et de culture. À ce titre, l’implantation de nouveaux « croque-livres » dans les parcs du secteur Harwood, tels que le Croque-Félix-Leclerc situé sur le chemin de l’Anse, pourrait être une option permettant...
de consolider l’accès à du matériel culturel en libre-service à peu de frais, d’autant plus que la bibliothèque municipale de Vaudreuil-Dorion est située à plus de quatre kilomètres du secteur Harwood. L’initiative des croque-livres est un réseau de boîtes de partage de livres destinées aux jeunes âgés de 0 à 12 ans du Québec. Soulignons que le Comité d’action locale de Vaudreuil-Soulange a contribué à l’émergence de cette initiative au Québec en participant au comité de partenaires réuni par la Fondation Lucie et André Chagnon qui a développé ce projet.

Dans le même esprit, la Ville de Rouyn-Noranda a développé une initiative visant à rendre disponibles dans les parcs des coffres à jeu libre, souvent en complément des boîtes croque-livres, afin de mettre à la disposition des tout-petits du matériel leur permettant de jouer librement à l’extérieur (ex. : jouets de sable, camions, voitures, échasses, cerceaux, déguisements, cordes à danser, bulles, ballons, etc.). Un exemple de coffres à jeu libre et de « croque-livres » est présenté à la Figure 43. Ce type d’initiative peut compléter l’offre de mobilier et modules de jeux et est particulièrement adapté à un quartier caractérisé par une forte densité résidentielle et conséquemment, une offre limitée d’espaces extérieurs privés pouvant restreindre les opportunités de jeu libre et actif des enfants dans l’environnement immédiat.

Ces exemples pourraient être combinés à d’autres initiatives, telles que la création d’une programmation de culture et loisir, permettant de rapprocher les services des milieux de vie des citoyens. Une approche de proximité contribue à l’animation d’un quartier, à l’appartenance et la cohésion sociale au sein de celui-ci tout en concourant à soutenir le dynamisme économique d’un milieu. Parmi ces autres initiatives, la création de jardins communautaires permettrait d’aménager des lieux de rencontre et de socialisation, en plus d’offrir aux citoyens le désirant un nouveau potentiel d’accès à des fruits et légumes frais, abordables en saison.

Figure 43 : Exemple de coffres à jeu libre et de « croque-livres »

Source : Radio-Canada [90].

PROJET DE RÉAMÉNAGEMENT DU SECTEUR HARWOOD
Recommandations

22. Accroître l’offre de parcs d’au moins un hectare en agrandissant la superficie des parcs prévus ou en aménageant un ou deux parcs supplémentaires.

22.1. Aménager le corridor actif de l’îlot Pasold sous la forme d’un parc de voisinage en multipliant les lieux de rencontre et de détente.

25. Dans les parcs existants et prévus, installer des aires de jeu et des équipements sportifs, tels que des modules pour enfants, des terrains de pétanque, de palet (shuffleboard) ou de jeux de fers permettant de créer des lieux propices aux rencontres sociales et à la pratique d’activités physiques pour tous les groupes d’âge.

26. Offrir des activités sociales et physiques, adaptées pour tous les groupes d’âge, afin d’augmenter les occasions de bouger et de rencontrer des résidents du secteur.

27. Installer des boîtes à livres et à jouets dans les parcs afin de mettre à la disposition des enfants du matériel favorisant l’éveil à la lecture et à l’écriture ainsi que le loisir libre et actif.

28. Dans les endroits jugés opportuns, aménager des jardins communautaires afin d’offrir un nouveau genre de lieu de rencontre et de socialisation et un potentiel d’accès à des fruits et légumes frais et abordables en saison.
LOGEMENTS RÉSIDENTIELS

Comme mentionné auparavant, les projets de réaménagement du secteur Harwood prévoient la construction de près de 5 100 logements résidentiels dans les années à venir. Considérant les impacts notables du logement sur la santé et la qualité de vie des citoyens, les analyses qui suivent proposent une lecture de l’état de situation actuel et des pistes de réflexion afin de faciliter l’établissement d’un quartier offrant les meilleures perspectives de santé et de qualité de vie à une population diversifiée.

Les impacts du logement sur la santé et ses déterminants

Un logement de piètre qualité nécessitant des réparations majeures (ex. : isolation inadéquate, infiltrations d’eau, système de chauffage inefficace) augmente les risques pour la santé, en particulier celle des jeunes enfants, des personnes âgées, des personnes atteintes de maladies chroniques et celle des personnes dont le système immunitaire est défaillant [91]. La présence de contaminants chimiques et biologiques, tels les moisissures, peut aggraver divers problèmes de santé, dont les maladies cardiovasculaires et respiratoires [92]. À cette liste, s’ajoute le risque de blessures associées notamment aux chutes ou aux incendies [93], lesquelles surviennent plus fréquemment dans les logements de mauvaise qualité.

Un coût de logement trop élevé par rapport au revenu disponible, c’est-à-dire son inabordabilité, limite les ressources financières requises pour combler d’autres besoins essentiels, tels que se nourrir, se vêtir adéquatement et se déplacer pour accéder à des emplois et à divers services (éducatifs, de santé et de loisirs) [94]. L’inabordabilité du logement est aussi reconnue pour favoriser la tendance au surpeuplement, lui-même associé à une morbidité plus élevée, voire à une hausse de la probabilité de vivre du stress chronique et de développer des problèmes psychologiques ou psychosociaux [95-98]. Chez les enfants, le niveau de stress élevé associé au surpeuplement accroît leur probabilité de développer des problèmes comportementaux et peut compromettre leur réussite scolaire [99-101].

À l’inverse, la disponibilité de logements adéquats se traduit par une meilleure perception de l’état de santé physique et mentale, un meilleur sentiment de sécurité [102] en plus de contribuer à augmenter la stabilité résidentielle des ménages et à accroître leur sentiment d’appartenance à la communauté [103]. Chez les personnes âgées, l’accessibilité à un logement de qualité et adapté représente une source d’autonomie et de contrôle, ce qui accroît leur sentiment d’inclusion sociale [104-106]. Par ailleurs, la stabilité résidentielle favorise la réussite éducative et le développement des enfants en leur permettant de fréquenter la même garderie, la même école, les mêmes milieux de loisir que leurs amis ou leurs frères et sœurs et donc de se créer un réseau social et de le conserver [107-109].

La Figure 44 résume les principaux impacts d’un logement sur les conditions de vie et la santé des habitants. Elle illustre les multiples conséquences associées à un logement dont le prix dépasse la capacité de payer des ménages. Les personnes peu nanties qui doivent faire des concessions sur la qualité et la taille du logement qu’elles occupent [110], s’exposent ainsi à divers effets indésirables pour la santé, tels que précédemment détaillés.
Afin de contrer ces impacts néfastes, trois normes d’acceptabilité sont à prendre en considération. Selon la Société canadienne d’hypothèque et de logement (SCHL), un logement acceptable doit être de qualité, de taille convenable et respecter les capacités financières des ménages (voir Tableau 4). Si un ménage habite un logement non conforme à l’une ou plus de ces trois normes d’acceptabilité, il est réputé habiter dans un logement non acceptable. Si un ménage habite dans un tel logement et que son revenu est insuffisant pour se payer un logement acceptable au prix médian dans sa localité, ce ménage est réputé éprouver des besoins impérieux en matière de logement.

Figure 44 : Principaux impacts du logement inadéquat sur la santé et ses déterminants
Tableau 4 : Normes d’un logement acceptable selon la SCHL (indicateurs composites)

<table>
<thead>
<tr>
<th>NORMES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prix abordable</td>
<td>Un logement dont le coût représente moins de 30 % du revenu du ménage. Chez les ménages locataires, les frais de logement comprennent le loyer et les paiements d’électricité, de chauffage, d’eau et autres services municipaux.</td>
</tr>
<tr>
<td>Taille convenable</td>
<td>Un logement comportant suffisamment de chambres pour répondre aux besoins du ménage, étant donné sa taille et sa composition. Le nombre requis est d’une chambre par :</td>
</tr>
<tr>
<td></td>
<td>• couple d’adultes</td>
</tr>
<tr>
<td></td>
<td>• personne de 18 ans et plus faisant partie du ménage</td>
</tr>
<tr>
<td></td>
<td>• couple d’enfants de même sexe âgés de moins de 18 ans</td>
</tr>
<tr>
<td></td>
<td>• fille ou garçon additionnel dans la famille, sauf s’il y a deux enfants de sexe opposé âgés de moins de cinq ans, qui peuvent alors partager la même chambre</td>
</tr>
<tr>
<td>Qualité convenable (sécuritaria et salubre)</td>
<td>Un logement qui, de l’avis de ses occupants, ne nécessite pas de réparations majeures et est salubre (état adéquat des matériaux, de la plomberie, des installations électriques, etc.).</td>
</tr>
</tbody>
</table>

Source : Société canadienne d’hypothèque et de logement (SCHL) [111]

Impacts potentiels du projet de réaménagement du secteur Harwood

Le projet de réaménagement entraînera de profondes répercussions sur l’état et le volume du parc de logements résidentiels du secteur Harwood. Alors qu’il y a près de 300 logements en 2015 dans ce secteur, ce nombre sera appelé à croître à plus de 5 000. Afin d’anticiper et d’améliorer les impacts potentiels de ce changement sur la santé et la qualité de vie des résidents, actuels et futurs, ces répercussions devraient être étudiées en considérant l’état actuel du parc de logements résidentiels et le profil socioéconomique de ses habitants.

Comparativement à la population de Vaudreuil-Dorion, la population résidant actuellement dans le secteur Harwood élargi (voir Figure 2), est composée d’une plus forte proportion de citoyens socialement et économiquement défavorisés. Comme rapporté au Tableau 5, en 2011, le revenu total moyen avant impôt de la population du secteur est inférieur à celui de la municipalité, cet écart dépassant les 5 000 $. Aussi, environ une personne sur huit vit sous le seuil de faible revenu. D’autre part, la proportion plus élevée de personnes faiblement scolarisées, de familles monoparentales et de personnes vivant seules laisse présager une plus grande vulnérabilité de la population du secteur Harwood élargi par rapport aux changements qui pourraient survenir sur le marché résidentiel. De plus, l’instabilité résidentielle observée, la proportion élevée de locataires et la proportion substantielle de la population résidant dans un logement plus âgé, permettent de croire que ce quartier ancien est peuplé de plusieurs ménages confrontés à une offre résidentielle inadéquate ne répondant pas à leurs besoins et pouvant compromettre leur sécurité, leur santé et leur qualité de vie.

Les dernières observations traduisent la vulnérabilité de nombreux résidents actuels du secteur Harwood élargi face aux défis de se loger convenablement. Cette vulnérabilité se répercute par ailleurs sur les proportions élevées de ménages locataires et propriétaires vivant dans un logement jugé non acceptable, soit respectivement 40 % et 26 %, (voir Tableau 6 et Tableau 7).
Tableau 5 : Indicateurs de la situation socioéconomique de la population, pour le secteur Harwood élargi, Vaudreuil-Dorion et la Montérégie, 2011

<table>
<thead>
<tr>
<th>Indicateurs</th>
<th>Secteur Harwood élargi</th>
<th>Vaudreuil-Dorion</th>
<th>Montérégie*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenu total moyen (avant impôt)*</td>
<td>35 358 $</td>
<td>40 563 $</td>
<td>38 751 $</td>
</tr>
<tr>
<td>Proportion de la population vivant sous le seuil de faible revenu après impôt*</td>
<td>13 %</td>
<td>8 %</td>
<td>9 %</td>
</tr>
<tr>
<td>Proportion de la population de 25 ans et plus n’ayant aucun certificat, diplôme ou grade*</td>
<td>16 %</td>
<td>13 %</td>
<td>19 %</td>
</tr>
<tr>
<td>Proportion de la population ayant déménagé au cours des cinq dernières années</td>
<td>39 %</td>
<td>44 %</td>
<td>34 %</td>
</tr>
<tr>
<td>Proportion de la population vivant dans un logement construit avant 1971*</td>
<td>29 %</td>
<td>16 %</td>
<td>32 %</td>
</tr>
<tr>
<td>Proportion de la population locataire de son logement*</td>
<td>32 %</td>
<td>16 %</td>
<td>23 %</td>
</tr>
<tr>
<td>Proportion de familles monoparentales</td>
<td>42 %</td>
<td>20 %</td>
<td>23 %</td>
</tr>
<tr>
<td>Proportion de la population vivant seule</td>
<td>16 %</td>
<td>13 %</td>
<td>14 %</td>
</tr>
</tbody>
</table>

Source : Statistique Canada, Recensement et Enquête nationale auprès des ménages de 2011

*Données issues de l’ENM

Note : Le taux global de non-réponse (TGN) à l’Enquête nationale auprès des ménages de 2011 est de 22 % pour le périmètre de l’EIS, de 15 % pour Vaudreuil-Dorion et de 23 % pour la Montérégie. Ce taux est utilisé comme principal critère de diffusion relié à la qualité des estimations de l’ENM. Ainsi, les estimations de l’ENM pour toute région géographique ayant un TGN de 50 % et plus ne sont pas diffusées, car elles risquent de présenter un biais élevé. Pour les données présentées dans ce tableau, plus le TGN est élevé, plus le risque de biais augmente. Les données de l’Enquête nationale auprès des ménages de 2011 ne peuvent être directement comparées à celles issues des recensements antérieurs.

Le territoire du secteur Harwood élargi est présenté à la Figure 2.

1 Il s’agit de la Montérégie administrative qui inclut les RLS de la Haute-Yamaska et de La Pompomeraie.

L’obstacle le plus fréquemment rencontré semble être celui de l’abordabilité du logement. Selon la dernière Enquête nationale auprès des ménages de Statistique Canada (2011), un locataire sur quatre (24 %) et un propriétaire sur six (17 %) vivent dans un logement considéré inabordable dans le secteur Harwood élargi, en raison d’un effort financier trop important consacré aux dépenses de logement, en comparaison à 30 % des locataires et 14 % des propriétaires dans l’ensemble de la municipalité.

Chez les locataires, la plus faible proportion de la population habitant un logement inabordable dans le secteur Harwood élargi par rapport à l’ensemble de la municipalité (24 % c. 30 %), malgré un revenu moyen plus faible (35 358 $ c. 40 563 $), s’explique vraisemblablement par un coût du logement inférieur à la moyenne municipale, dont les prix élevés résultent d’une pénurie de logements locatifs. Cette situation du marché du logement dans le secteur Harwood élargi, malgré le désavantage économique de sa population, constitue pour cette dernière un atout de taille pour se loger à coût abordable.

Cette situation pourrait toutefois ne pas perdurer puisque l’effervescence résidentielle que connaîtra le secteur Harwood au cours des prochaines années risque d’engendrer une hausse des coûts du logement. Afin de limiter cette hausse, une attention particulière devrait apporter à la nature des projets immobiliers qui prendront place afin qu’ils offrent aussi des logements à prix abordable. Ces efforts de maintien d’une offre de logements à prix abordable permettraient de contrer la gentrification qui pourrait s’opérer au sein du secteur Harwood. La gentrification se rapportant au processus par lequel la hausse du coût des logements entraîne un remplacement des ménages locaux à faible revenu par des ménages à revenu plus élevé, la situation socioéconomique telle que décrite...
précedemment d’une portion substantielle de la population du secteur Harwood élargi pourrait contraindre plusieurs personnes, notamment les locataires, à déménager à l’extérieur du quartier ou de la municipalité ou à augmenter leurs efforts aux dépenses de logement pour y demeurer [112-114].

Dans le but de mieux encadrer l’effervescence résidentielle que connaîtra le secteur Harwood et de limiter ses impacts potentiellement négatifs sur l’abordabilité des logements résidentiels actuels, la Ville de Vaudreuil-Dorion peut recourir au programme de financement des logements sociaux, chapeauté par la Communauté métropolitaine de Montréal (CMM). Ce programme couvre le montant requis pour le démarrage de projet de logements sociaux, soit en moyenne 15 % du coût du projet (selon la Société d’habitation du Québec) et ainsi servir à financer à coût nul l’investissement requis par la communauté. Ce programme pourrait notamment servir à soutenir le projet de 32 logements pour familles, élaboré par le Groupe de ressources techniques du Sud-Ouest, mais qui est en suspens depuis plusieurs mois en raison de l’absence d’un terrain disponible sur le territoire de Vaudreuil-Dorion. Ainsi, la réalisation de projets de logements abordables réduirait la pression économique que vivent plusieurs ménages du secteur et améliorerait la qualité globale des logements du secteur. Le logement social et abordable représentait en 2013 moins de 10 % de l’offre totale en logement locatif dans la municipalité.

À ce titre, les faibles coûts apparents du logement dans le secteur Harwood élargi s’accompagnent toutefois d’un parc résidentiel de moindre qualité que dans l’ensemble de la municipalité. En effet, dans le secteur Harwood élargi, 15 % de la population vivant dans un ménage locataire et 10 % de celle vivant dans un ménage propriétaire habitent un logement de qualité insuffisante. Ces proportions atteignent respectivement 6 % et 13 % dans Vaudreuil-Dorion. Les proportions élevées de la population vivant dans un logement de qualité insuffisante dans le secteur Harwood élargi, soit près de trois fois supérieure à la moyenne municipale, pourraient s’expliquer par la plus forte proportion de logements construits avant 1971 (29 % c. 15 %). Un programme de soutien à la rénovation pour les immeubles résidentiels du secteur devrait être considéré. Un tel programme permettrait d’améliorer la qualité et la préservation du parc de logements actuels, vraisemblablement plus abordables que les futurs logements appelés à se construire lors de la réalisation du projet de réaménagement. En effet, les logements construits depuis plus de 40 ans peuvent présenter un déficit d’entretien, diminuant d’autant leur qualité et leur salubrité, dans un secteur où la vulnérabilité socioéconomique de plusieurs ménages est avérée.

Enfin, même si les proportions de la population vivant dans un logement trop petit ou éprouvant des besoins impérieux ne sont pas disponibles pour le secteur Harwood élargi, il est néanmoins possible de présumer qu’elles y sont proportionnellement plus élevées que dans l’ensemble de la municipalité, considérant les taux plus élevés de la population vivant dans un logement non acceptable.

<table>
<thead>
<tr>
<th>Indicateurs</th>
<th>Secteur Harwood élargi¹</th>
<th>Vaudreuil-Dorion</th>
<th>Montérégie²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population³</td>
<td>745</td>
<td>5 310</td>
<td>317 970</td>
</tr>
<tr>
<td>Proportion de la population habitant un logement non acceptable (c’est-à-dire ne répondant pas à au moins une norme d’acceptabilité)</td>
<td>40 %</td>
<td>42 %</td>
<td>42 %</td>
</tr>
<tr>
<td>Proportion de la population habitant un logement inabordable</td>
<td>24 %</td>
<td>30 %</td>
<td>28 %</td>
</tr>
<tr>
<td>Proportion de la population habitant un logement de qualité insuffisante</td>
<td>15 %</td>
<td>6 %</td>
<td>8 %</td>
</tr>
<tr>
<td>Proportion de la population habitant un logement de taille insuffisante</td>
<td>ND</td>
<td>10 %</td>
<td>11 %</td>
</tr>
<tr>
<td>Proportion de la population éprouvant des besoins impérieux de logement</td>
<td>ND</td>
<td>15 %</td>
<td>19 %</td>
</tr>
</tbody>
</table>

Note : Le taux global de non-réponse (TGN) à l’Enquête nationale auprès des ménages de 2011 est de 22 % pour le périmètre de l’EIS, de 15 % pour Vaudreuil-Dorion et de 23 % pour la Montérégie. Ce taux est utilisé comme principal critère de diffusion relié à la qualité des estimations de l’ENM. Ainsi, les estimations de l’ENM pour toute région géographique ayant un TGN de 50 % et plus ne sont pas diffusées, car elles risquent de présenter un biais élevé. Pour les données présentées dans ce tableau, plus le TGN est élevé, plus le risque de biais augmente. Les données de l’Enquête nationale auprès des ménages de 2011 ne peuvent être directement comparées à celles issues des recensements antérieurs.

¹ Le territoire du secteur Harwood élargi est présenté à la Figure 2.

² Il s’agit de la Montérégie administrative, laquelle inclut les RLS de la Haute-Yamaska et de La Pommeraie.

³ Population vivant en logement privé non agricole et ayant un revenu avant impôt supérieur à zéro et dont le taux d’effort est inférieur à 100 %

Tableau 7 : État d’acceptabilité des logements pour les propriétaires, pour le secteur Harwood élargi, Vaudreuil-Dorion et la Montérégie, 2011

<table>
<thead>
<tr>
<th>Indicateurs</th>
<th>Secteur Harwood élargi¹</th>
<th>Vaudreuil-Dorion</th>
<th>Montérégie²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population³</td>
<td>1 595</td>
<td>27 235</td>
<td>1 083 905</td>
</tr>
<tr>
<td>Proportion de la population habitant un logement non acceptable (c’est-à-dire ne répondant pas à au moins une norme d’acceptabilité)</td>
<td>26 %</td>
<td>21 %</td>
<td>20 %</td>
</tr>
<tr>
<td>Proportion de la population habitant un logement inabordable</td>
<td>17 %</td>
<td>14 %</td>
<td>12 %</td>
</tr>
<tr>
<td>Proportion de la population habitant un logement de qualité insuffisante</td>
<td>10 %</td>
<td>3 %</td>
<td>6 %</td>
</tr>
<tr>
<td>Proportion de la population habitant un logement de taille insuffisante</td>
<td>ND</td>
<td>5 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Proportion de la population éprouvant des besoins impérieux de logement</td>
<td>ND</td>
<td>2 %</td>
<td>3 %</td>
</tr>
</tbody>
</table>

Note : Le taux global de non-réponse (TGN) à l’Enquête nationale auprès des ménages de 2011 est de 22 % pour le périmètre de l’EIS, de 15 % pour Vaudreuil-Dorion et de 23 % pour la Montérégie. Ce taux est utilisé comme principal critère de diffusion relié à la qualité des estimations de l’ENM. Ainsi, les estimations de l’ENM pour toute région géographique ayant un TGN de 50 % et plus ne sont pas diffusées, car elles risquent de présenter un biais élevé. Pour les données présentées dans ce tableau, plus le TGN est élevé, plus le risque de biais augmente. Les données de l’Enquête nationale auprès des ménages de 2011 ne peuvent être directement comparées à celles issues des recensements antérieurs.

¹ Le territoire du secteur Harwood élargi est présenté à la Figure 2.

² Il s’agit de la Montérégie administrative qui inclut les RLS de la Haute-Yamaska et de La Pommeraie.

³ Population vivant en logement privé non agricole et ayant un revenu avant impôt supérieur à zéro et dont le taux d’effort est inférieur à 100 %
Recommandations

29. Développer l’offre de logements abordables dans le secteur Harwood et ses environs.
 29.1. Recourir au programme de financement des logements sociaux ou communautaires de la Communauté métropolitaine de Montréal (CMM) pour financer la contribution de base requise.
 29.2. Acquérir des espaces propices au développement de logements sociaux, tels que des terrains vacants, espaces de stationnement ou immeubles commerciaux ou institutionnels afin de pouvoir soutenir des projets de logements sociaux ou communautaires.
 29.3. Adopter un règlement municipal contraignant les promoteurs d’habitations à inclure des logements locatifs et abordables.

30. Prévoir des mesures de soutien financier pour la rénovation résidentielle, tant pour les logements occupés par des locataires que pour ceux occupés par des propriétaires.
SÉCURITÉ INDUSTRIELLE

L’ampleur et la localisation du projet de réaménagement du secteur Harwood doivent se répercuter par une préoccupation des autorités municipales à l’égard de la sécurité de ses futurs habitants. Cette préoccupation s’avère d’autant plus pertinente que la présence d’industries détenant des quantités élevées de produits chimiques et la proximité des voies ferrées du Canadien National (CN) et du Chemin de fer Canadien Pacifique (CFCP) font du secteur Harwood un site devant composer avec la présence de risques industriels. Afin de mieux gérer ces risques et d’assurer une meilleure qualité de vie à l’ensemble des citoyens, un résumé des considérations associées à la sécurité industrielle et la santé de même que des analyses sur l’état de situation du secteur Harwood sont proposées.

Les impacts de la sécurité industrielle sur la santé et ses déterminants

Dans la gestion des entreprises, la sécurité industrielle, au sens large, consiste de façon générale à garantir la sécurité des personnes et des biens tout en permettant la pérennité de l’entreprise. Lorsque des entreprises industrielles ont des activités qui présentent des dangers et des risques avérés ou plausibles, la sécurité industrielle se focalise alors plus spécifiquement sur l’analyse de ces risques et sur leur maîtrise, notamment en cas de déversement accidentel lors de l’entreposage ou du transport des matières dangereuses. Dans le cadre d’un accident industriel impliquant des matières dangereuses, l’exposition est considérée comme étant « aiguë », c’est-à-dire importante, mais de courte durée. Les effets sur la santé seront alors plus ou moins importants selon l’ampleur du rejet et la proximité des personnes par rapport au lieu d’émission des matières dangereuses. Également, certains sous-groupes de la population sont plus à risque d’éprouver des problèmes de santé en cas d’exposition à des matières dangereuses, selon leurs caractéristiques individuelles (jeunes enfants, femmes enceintes, personnes âgées, etc.).

Les effets sur la santé associés aux matières dangereuses toxiques, telles que celles retrouvées sur le territoire à l’étude sont de type irritatif :

- irritation des yeux (ex. : larmoiement, yeux rouges);
- des voies respiratoires (ex. : gorge sèche, toux, difficulté à respirer);
- de la peau (ex. : rougeurs, piquets, etc.).

En situation d’urgence, les voies respiratoires sont la principale voie d’exposition. La dispersion d’un nuage toxique est fortement influencée par les conditions météorologiques présentes au moment de son émission. Par exemple, la présence de vents forts contribuera à disperser le nuage toxique sur de grandes distances, dans la direction du vent.

Si la contamination de l’environnement persiste à moyen ou à long terme à la suite d’un accident industriel impliquant des matières dangereuses, d’autres voies d’exposition doivent aussi être considérées. À l’exposition par inhalation peut notamment s’ajouter l’ingestion d’eau, de sols ou de produits alimentaires contaminés et l’exposition par contact cutané avec des objets contaminés. Ces voies d’exposition supplémentaires peuvent affecter différemment la santé de la population, et ce, dans un rayon plus grand que celui touché initialement lors de l’accident. Par ailleurs, la survenue d’un accident industriel peut engendrer du stress et des impacts psychologiques à différents niveaux au sein de la population.
Impacts potentiels du projet de réaménagement du secteur Harwood

Le transport et l’entreposage de matières dangereuses peuvent représenter un risque pour la population. Afin de réduire les conséquences, il est important d’identifier ces risques potentiels et de s’y préparer adéquatement. La présente section vise à anticiper les impacts potentiels des activités industrielles de Vaudreuil-Dorion sur la santé et la qualité de vie des citoyens qui habitent ou transitent par le secteur Harwood. Parce qu’ils sont susceptibles d’influencer certains déterminants de la santé de façon plus notable, l’entreposage et le transport de matières font l’objet des analyses et recommandations retrouvées ci-dessous.

Entreposage de matières dangereuses

La Loi canadienne sur la protection de l’environnement (L.C. 1999, ch. 33; Environnement Canada) habilite le Règlement sur les urgences environnementales (RUE). Les objectifs de ce règlement sont de réduire, par une planification de la réponse aux urgences environnementales, la fréquence et les conséquences des rejets accidentels de matières dangereuses dans l’environnement. Dans l’Annexe 1 du RUE, on retrouve une liste de matières qui présentent un risque potentiel pour l’environnement et la santé humaine si elles sont entreposées ou manipulées dans des entreprises en une quantité égale ou supérieure au seuil réglementé. Ainsi, les entreprises canadiennes qui détiennent des matières dangereuses identifiées à l’Annexe 1 du RUE, et ce, au-delà du seuil de déclaration, sont consignées dans un registre par Environnement Canada. Ce registre, partiellement accessible au public, a pour avantages :

- de recenser les entreprises détenant les plus grandes quantités de matières considérées comme représentant un risque pour la population et/ou l’environnement;
- de fournir les noms et adresses complètes (incluant les coordonnées géographiques) pour chacune de ces entreprises, permettant ainsi leur regroupement par territoire administratif;
- d’identifier les matières dangereuses, les quantités entreposées ainsi que les capacités maximales des réservoirs détenus pour chaque entreprise.

Les entreprises figurant au registre du RUE sont tenues de mettre en œuvre et de tester un plan d’urgence environnemental spécifique à l’endroit où la matière dangereuse est entreposée. À Vaudreuil-Dorion, trois entreprises signalent posséder des quantités nécessitant une déclaration auprès d’Environnement Canada en vertu du RUE (voir le Tableau 8). Comme l’illustre la Figure 45, en cas de déversement ou de fuite de l’un de ces produits, les rayons d’intervention minimums et maximums recommandés pour le confinement ou l’évacuation de la population varient de 300 à 7 900 m [115]. Les rayons d’intervention de l’entreprise UBA et de l’usine de filtration de Vaudreuil-Dorion s’étendent au secteur Harwood.

En cas d’accidents industriels, l’exposition à des émanations d’acide chlorhydrique, d’ammoniac ou de chlore peut irriter la peau, les yeux et les voies respiratoires (gorge, poumons), occasionnant de la toux et des brûlures des muqueuses à divers degrés, selon la concentration de ces produits dans l’air. Dans les cas les plus sévères, une exposition prolongée ou à de fortes concentrations pourrait entraîner la mort.
Figure 45 : Carte des rayons d’intervention minimums et maximums en cas d’accidents industriels à Vaudreuil-Dorion

Source : *Entreprise : Registre sur les urgences environnementale (RUE), Environnement Canada, janvier 2013

Rayon d’intervention minimum (Wiser, version 4.5.154)
Rayon d’intervention maximum (Wiser, version 4.5.154)

Autres éléments
- Hydrographie
- Réseau routier local
- Territoire PPU
- Entreprise enregistrée au RUE
Tableau 8 : Entreprises de Vaudreuil-Dorion déclarant des matières dangereuses en vertu du RUE

<table>
<thead>
<tr>
<th>Installation</th>
<th>Numéro d’enregistrement CAS / Substance</th>
<th>Quantité maximale sur le site (en tonne)</th>
<th>Capacité d’un conteneur (en tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBA 829, Route Harwood</td>
<td>7647-01-0 Acide chlorhydrique</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Kraft 401, rue Marie-Curie</td>
<td>7664-41-7 Ammoniac anhydre</td>
<td>5,36</td>
<td>7,73</td>
</tr>
<tr>
<td>Usine de filtration (Vaudreuil-Dorion) 2530, rue Paul-Gérin-Lajoie</td>
<td>7782-50-5 Chlore</td>
<td>1,7</td>
<td>0,068</td>
</tr>
</tbody>
</table>

Par ailleurs, il est possible que d’autres entreprises entreposant des matières dangereuses en quantité inférieure au seuil de déclaration du RUE soient présentes dans le secteur et représentent un risque d’accident industriel. Puisque ces entreprises ne sont pas enregistrées, il est toutefois difficile de quantifier et de préciser le risque additionnel qu’elles représentent réellement. Advenant une fuite, un déversement ou une explosion reliés à ces matières dangereuses, le rayon d’intervention pourrait recouvrir une partie du secteur Harwood, selon leur localisation.

Transport de matières dangereuses

Le transport des matières dangereuses constitue également une activité générant un risque pour la population, que ce soit lors du transport même de ces matières ou lors de leur chargement et déchargement. Le transport routier, en particulier, contribue à disperser la présence de matières dangereuses un peu partout sur le territoire et à rapprocher celles-ci des zones résidentielles. En 2008 au Canada, le transport routier représentait 70 % du tonnage des matières dangereuses transportées, comparativement à 23 % pour le transport ferroviaire et à 7 % pour le transport maritime [116]. La présence d’un important parc industriel à Vaudreuil-Dorion, le croisement des autoroutes 20, 30 et 40 dans le secteur, la proximité de deux lignes de chemin de fer tout près du boulevard Harwood et de la voie maritime du Saint-Laurent, ainsi que la présence d’une entreprise spécialisée dans le transport de substances chimiques (UBA) attirent et génèrent le déplacement de matières dangereuses.

Le transport routier des marchandises est important au Québec. Le MTQ constate d’ailleurs que le réseau routier supérieur (autoroutes) est très sollicité. La MRC de Vaudreuil-Soulanges évoque d’ailleurs dans son schéma d’aménagement que la discontinuité de l’A-20 en boulevard urbain représente une contrainte.

Selon une étude du MTQ, le débit journalier moyen annuel (DJMA) relié au transport par camion est estimé en 2008 de 2 000 à 4 000 camions sur la première portion du boulevard Harwood, pour grimper de 4 000 à 6 000 à l’approche de l’Île-Perrot. Le DJMA anticipé pour les camions en 2016 est de 4 000 à 6 000 pour l’ensemble du boulevard Harwood.

Le boulevard Harwood est déjà très achalandé et comme le démontrent les données du MTQ, ce boulevard le sera encore davantage dans les années à venir. Puisque celui-ci sert également de voie de transit entre les deux tronçons de l’A-20, le volume de camions qui y passe est également important. Dans une perspective de densification de la population à proximité de ce boulevard, il faut prendre en considération la sécurité des usagers de la route et la proximité des matières dangereuses transportées par
RAPPORT SUR LES IMPACTS POTENTIELS ET RECOMMANDATIONS

camion par rapport aux futures zones résidentielles.

Le parachèvement de l’A-20 aura sûrement pour conséquence de réduire considérablement le trafic de transit sur le boulevard Harwood, particulièrement en ce qui a trait au camionnage. Toutefois, dans la mesure où le boulevard restera une voie de circulation importante, différentes mesures peuvent être mises en place pour atténuer les nuisances associées au transport routier.

Lors du transport routier des matières dangereuses, il n’est pas obligatoire de déclarer spécifiquement les matières transportées, pourvu que soient respectées la Loi sur le transport des marchandises dangereuses (L.C. 1992, ch. 34) et le règlement provincial sur le transport des matières dangereuses (chapitre C-24.2, r. 43) au niveau provincial. Cependant, par le biais du Code municipal du Québec et de la Loi sur les cités et villes, les municipalités peuvent se doter de réglementations visant à proposer des itinéraires de contournement pour le passage des matières dangereuses puisqu’elles sont autorisées à contrôler les activités dangereuses sur leur territoire [116]. Ces itinéraires recommandés sont identifiés par des panneaux qui servent à guider les conducteurs lors de la traversée d’un endroit critique (ex. : agglomération).

Le transport ferroviaire contribue également à la proximité des matières dangereuses, lorsque les voies traversent des quartiers résidentiels densément peuplés. Depuis la tragédie de Lac-Mégantic, Transport Canada a donné l’Ordre préventif n°32 afin d’améliorer la planification des mesures d’urgence par les municipalités et les premiers intervenants locaux. Ainsi, les sociétés ferroviaires de classe 1 qui transportent des marchandises dangereuses doivent fournir annuellement la liste des matières transportées sur leur territoire aux municipalités qui en font la demande.

Deux compagnies ferroviaires de classe 1 transitent dans le secteur de Vaudreuil-Dorion. Il s’agit d’abord de la ligne principale du CN qui traverse le territoire d’est en ouest en deux tronçons distincts; de la frontière ontarienne jusqu’à Vaudreuil-Dorion et du pont Victoria en direction est vers Drummondville. Il s’agit également du CFCP qui possède une ligne principale entre Vaudreuil-Dorion et la frontière ontarienne. Un embranchement entre Vaudreuil-Dorion et Rigaud, d’environ 15 km, appartient aussi au CFCP, mais supporte principalement les opérations de l’Agence métropolitaine de transport (AMT) [117].

Le projet de densification et de réaménagement du boulevard Harwood aura pour effet de rapprocher les zones résidentielles des voies ferrées, qui auparavant bénéficiaient d’une certaine zone tampon. Ainsi, il sera important de prévoir un développement résidentiel tenant compte des contraintes inhérentes au transport ferroviaire, tant sur le plan des nuisances (bruit, vibrations, odeurs de diesel, etc.) que de la
sécurité (circulation, accidents impliquant ou non des matières dangereuses).

La réduction des risques à la source est le meilleur moyen de limiter les conséquences négatives d’un accident impliquant des matières dangereuses au sein de la population. Par exemple, la substitution de matières dangereuses par des produits moins nocifs dans les procédés de fabrication, ou la réduction des volumes de matières dangereuses entreposées ou transportées peuvent contribuer à réduire le rayon d’impact, voire même à l’éliminer. Au plan municipal, l’éloignement des populations des sites à risque, par la mise en place de schémas d’aménagement tenant compte de ces contraintes, demeure l’approche la plus efficace pour éviter d’exposer la population aux émissions de matières dangereuses.

Toutefois, le risque zéro n’existe pas et, en ce sens, une préparation adéquate s’impose pour limiter les impacts sur la population. L’efficacité de l’intervention lors d’un accident impliquant des matières dangereuses dépend fortement du niveau de préparation des différents acteurs concernés (municipalité, service incendie, entreprises, citoyens, etc.). Les schémas de couverture de risque, les plans de mesures d’urgence, les comités mixtes municipalité-industries (CMMI) (voir Annexe 3), les sirènes d’alerte à la population et les systèmes d’appels automatisés ne sont que quelques exemples d’outils pouvant contribuer à cette préparation.
Recommandations

Les recommandations qui suivent ne permettent pas d'éliminer complètement les sources de risque, mais proposent des pistes pour les amoindrir et en faciliter la gestion.

31. Réaliser une cartographie précise des entreprises visées par le Règlement sur les urgences environnementales, ainsi que d’autres entreprises possédant des matières dangereuses, incluant le positionnement des équipements d’entreposage de substances dangereuses afin de préciser les distances les séparant du secteur Harwood.

32. Mettre en place des moyens afin d’éviter que de nouvelles entreprises utilisant des matières dangereuses ne s’installent à proximité des secteurs résidentiels.
 32.1. Collaborer avec la MRC afin de préciser les usages permis dans les zones commerciales et industrielles à proximité du secteur Harwood.
 32.2. Se doter d’un règlement municipal de zonage spécifiant les activités exclues dans les affectations concernées.

33. Utiliser des outils de gestion de risque lors d’accidents industriels et s’assurer de la préparation adéquate de tous les acteurs concernés (municipalité, citoyens, entreprises, etc.).
 33.1. Assurer l’adoption et la mise à jour de plans d’urgence pour toute entreprise possédant des matières dangereuses.
 33.2. Se doter de mécanismes de partage d’information et de gestion des plans de mesures d’urgence, par exemple par la formation d’un comité mixte municipalité-industries (CMMI).
 33.3. Maintenir les schémas de couverture de risque à jour.

34. Proposer des itinéraires de contournement pour éviter le transport de matières dangereuses sur le boulevard Harwood, ce qui réduirait les risques d’accidents et d’effets sur la santé pour les résidents du secteur.

35. Formuler annuellement une demande à Transport Canada afin de recevoir les rapports sur les convois de matières dangereuses des compagnies ferroviaires (CN et CFCP) qui exploitent des lignes ferroviaires sur le territoire de Vaudreuil-Dorion, en vertu de l’Ordre préventif n° 32 émis par Transport Canada.

36. Adopter, dans le cadre de règlements municipaux, les règles d’aménagement énoncées dans les lignes directrices applicables aux nouveaux aménagements à proximité des activités ferroviaires (2013). À noter toutefois que ces règles représentent un minimum à respecter et que la municipalité peut mettre en place des règles plus restrictives.

37. Imposer la construction de bâtiments résistants aux vibrations, particulièrement ceux qui seront construits en bordure des voies ferrées.

38. S’assurer que la configuration du futur quartier résidentiel permettra en tout temps un accès à la voie ferrée aux premiers répondants dans l’éventualité d’un accident ferroviaire impliquant des matières dangereuses.

39. S’assurer que le service de sécurité incendie dispose des ressources nécessaires pour intervenir efficacement en cas d’accidents industriels ou relié au transport de matières dangereuses.

40. Élaborer et mettre en place des campagnes de communication à la population sur la sécurité industrielle ou reliée au transport de matières dangereuses.
ANNEXE 1 –
SYNTHÈSE DES RECOMMANDATIONS

Cadre bâti et mobilité

1. Favoriser une densification du secteur Harwood et de l’aire TOD, notamment par un aménagement compact du territoire, pour soutenir le transport actif et collectif.
 1.1. Comme prévu au Programme particulier d’urbanisme (PPU), densifier le secteur Harwood à la hauteur de 60 log/ha.
 1.2. Viser une densité résidentielle brute minimale de 40 log/ha pour l’ensemble du secteur Harwood.
 1.3. Afin d’atteindre les objectifs du Plan métropolitain d’aménagement et de développement (PMAD), soutenir une densification graduelle de l’ensemble de l’aire TOD jusqu’à ce qu’elle atteigne une densité résidentielle de 40 log/ha.

2. Limiter le nombre et la superficie des stationnements sur l’ensemble du secteur Harwood.
 2.1. Mettre en place un ratio maximal de cases de stationnement plutôt qu’une norme minimale. Instaurer un ratio progressif de maximum 1,0 à 1,25 case/logement à l’intérieur de l’aire TOD et un maximum de 1,25 à 1,5 véhicule/logement pour le reste du secteur.
 2.2. Diminuer la taille moyenne des cases de stationnement (passer de la taille standard de 2,7 m par 5,5 m à une taille réduite de 2,5 m par 5,0 m). Se faisant, conserver quelques cases plus larges pour les familles et les personnes à mobilité réduite.
 2.3. Les stationnements en façade devraient être interdits et déplacés à l’arrière (ou sur le côté) du bâtiment ou en parallèle sur la rue.

3. Réduire les îlots de chaleur urbains en verdissant les surfaces minéralisées soit les abords de rues, les aires de stationnement et les murs et toits des immeubles.
 3.1. Planter des arbres aux abords des rues afin d’offrir une couverture d’ombraje minimale de 50 % à proximité des zones résidentielles.
 3.2. Construire des îlots végétalisés en bordure des trottoirs et des rues.
 3.3. Aménager les aires de stationnement selon la norme 3019-190 du Bureau de normalisation du Québec.

4. Améliorer la connectivité des réseaux pour les déplacements à pied et à vélo.
 4.1. Aménager deux tunnels arqués reliant la rue Marier à la rue Besner ainsi que l’avenue du Curé-David et la 4e Avenue.
 4.2. S’assurer que tous les services et les commerces fréquemment visités ainsi que les parcs sont reliés aux différents secteurs résidentiels par un trottoir en bon état et sécuritaire en toute saison (dénéigé et déglacé).

5. Lors de la réfection des rues, construire des trottoirs d’une largeur minimale de 1,8 m sur toutes les rues à faible débit et de minimalement 2,1 m sur celles à fort achalandage.
 5.1. Aménager des abaissés de trottoir et des surfaces podotactiles à tous les passages piétonniers.
 5.2. Aménager des bordures bétonnées et végétalisées entre le trottoir et la rue, lorsque l’espace le permet.

7. Aménager des avancées de trottoir à toutes les intersections où les débits de piétons et de véhicules motorisés sont élevés, notamment aux intersections rencontrées sur le boulevard Harwood, la rue De Lotbinière et l’avenue Saint-Jean-Baptiste.

8. Aménager des placettes en bordure des trottoirs sur les principales trajectoires empruntées par les piétons et à proximité des arrêts d’autobus.

9. Installer des feux piétons protégés à toutes les intersections du boulevard Harwood et aux autres jugées appropriées, telles que sur la rue De Lotbinière.

10. Si un carrefour giratoire devait être construit sur le boulevard Harwood, privilégier l’aménagement d’un giratoire à une voie.

11. Aménager des intersections texturées et surélevées aux intersections jugées appropriées, notamment à tous les croisements du corridor actif avec les rues de l’Îlot Pasold.

12. Étendre le réseau cyclable du secteur Harwood et de l’aire TOD afin d’augmenter son potentiel de déplacements actifs et sa sécurité.

12.3. Aménager des chaussées désignées sur la rue Brodeur et les avenues Vaudreuil et de l’Église pour relier la voie cyclable de l’avenue Saint-Charles à la gare de train.

13. Installer des supports à vélo à proximité de la gare de train, dans les parcs, les commerces et services, idéalement à l’abri des intempéries et à proximité des entrées principales.

13.1. Mettre en place un ratio minimal d’une place de stationnement à vélo par nouveau logement et de cinq places par 100 m de façade sur les rues commerçantes.

15. Réévaluer l’aménagement de l’avenue Saint-Charles, à proximité de l’embouchure nord du tunnel piétonnier, afin de faciliter et sécuriser la traverse des piétons et des cyclistes, possiblement par la pose d’un arrêt obligatoire.

16. Réaménager toutes les rues du secteur Harwood en favorisant la mise en place de mesures d’apaisement de la circulation, l’intégration de mobilier urbain et de lampadaires de 6 m et en maximisant la végétation, voir Figures 26 et 29 à 34.

17. Aménager les futures rues de l’Îlot Pasold en favorisant la mise en place de mesures d’apaisement de la circulation, l’intégration de mobilier urbain et de lampadaires de 6 m et en maximisant la végétation, voir Figure 34 et Figure 35.

18. Aménager le corridor actif de l’Îlot Pasold à l’image d’un parc de voisinage, c’est-à-dire en privilégiant des zones de détente et de rencontre pour les citoyens, voir Figure 36.

20. Privilégier une vitesse autorisée de 70 km/h sur la future A-20 afin de diminuer de moitié l’émission de bruit et des principaux polluants atmosphériques.

Parcs et espaces verts urbains

22. Accroître l’offre de parcs d’au moins un hectare en agrandissant la superficie des parcs prévus ou en aménageant un ou deux parc supplémentaires.

22.1. Aménager le corridor actif de l’Îlot Pasold sous la forme d’un parc de voisinage en multipliant les lieux de rencontre et de détente.

25. Dans les parcs existants et prévus, installer des aires de jeu et des équipements sportifs, tels que des modules pour enfants, des terrains de pétanque, de palet (shuffleboard) ou de jeux de fers permettant de créer des lieux propices aux rencontres sociales et à la pratique d’activités physiques pour tous les groupes d’âge.

26. Offrir des activités sociales et physiques, adaptées pour tous les groupes d’âge, afin d’augmenter les occasions de bouger et de rencontrer des résidents du secteur.

27. Installer des boîtes à livres et à jouets dans les parcs afin de mettre à la disposition des enfants du matériel favorisant l’éveil à la lecture et à l’écriture ainsi que le loisir libre et actif.

28. Dans les endroits jugés opportuns, aménager des jardins communautaires afin de créer un nouveau genre de lieu de rencontre et de socialisation et un potentiel d’accès à des fruits et légumes frais et abordables en saison.

Logements résidentiels

29. Développer l’offre de logements abordables dans le secteur Harwood et ses environs.

29.1. Recourir au programme de financement des logements sociaux ou communautaires de la Communauté métropolitaine de Montréal (CMM) pour financer la contribution de base requise.

29.2. Acquérir des espaces propices au développement de logements sociaux, tels que des terrains vacants, espaces de stationnement ou immeubles commerciaux ou institutionnels afin de pouvoir soutenir des projets de logements sociaux ou communautaires.

29.3. Adopter un règlement municipal contraignant les promoteurs d’habitations à inclure des logements locatifs et abordables.

30. Prévoir des mesures de soutien financier pour la rénovation résidentielle, tant pour les logements occupés par des locataires que pour ceux occupés par des propriétaires.

Sécurité industrielle

Les recommandations qui suivent ne permettent pas d’éliminer complètement les sources de risque, mais proposent des pistes pour les amoindrir et faciliter la gestion.

31. Réaliser une cartographie précise des entreprises visées par le Règlement sur les urgences environnementales, ainsi que d’autres entreprises possédant des matières dangereuses, incluant le positionnement des équipements d’entreposage de substances dangereuses afin de préciser les distances les séparant du secteur Harwood.

32. Mettre en place des moyens afin d’éviter que de nouvelles entreprises utilisant des matières dangereuses ne s’installent à proximité des secteurs résidentiels.

32.1. Collaborer avec la MRC afin de préciser les usages permis dans les zones commerciales et industrielles à proximité du secteur Harwood.

32.2. Se doter d’un règlement municipal de zonage spécifiant les activités exclues dans les affectations concernées.

33. Utiliser des outils de gestion de risque lors d’accidents industriels et s’assurer de la préparation adéquate de tous les acteurs concernés (municipalité, citoyens, entreprises, etc.).

33.1. Assurer l’adoption et la mise à jour de plans d’urgence pour toute entreprise possédant des matières dangereuses.

33.2. Se doter de mécanismes de partage d’information et de gestion des plans de mesures d’urgence, par exemple par la formation d’un comité mixte municipalité-industries (CMMI).
33.3. Maintenir les schémas de couverture de risque à jour.

34. Proposer des itinéraires de contournement pour éviter le transport de matières dangereuses sur le boulevard Harwood, ce qui réduirait les risques d’accidents et d’effets sur la santé pour les résidents du secteur.

35. Formuler annuellement une demande à Transport Canada afin de recevoir les rapports sur les convois de matières dangereuses des compagnies ferroviaires (CN et CFCP) qui exploitent des lignes ferroviaires sur le territoire de Vaudreuil-Dorion, en vertu de l’Ordre préventif n° 32 émis par Transport Canada.

36. Adopter, dans le cadre de règlements municipaux, les règles d’aménagement énoncées dans les lignes directrices applicables aux nouveaux aménagements à proximité des activités ferroviaires (2013). À noter toutefois que ces règles représentent un minimum à respecter et que la municipalité peut mettre en place des règles plus restrictives.

37. Imposer la construction de bâtiments résistants aux vibrations, particulièrement ceux qui seront construits en bordure des voies ferrées.

38. S’assurer que la configuration du futur quartier résidentiel permettra en tout temps un accès à la voie ferrée aux premiers répondants dans l’éventualité d’un accident ferroviaire impliquant des matières dangereuses.

39. S’assurer que le service de sécurité incendie dispose des ressources nécessaires pour intervenir efficacement en cas d’accidents industriels ou relié au transport de matières dangereuses.

40. Élaborer et mettre en place des campagnes de communication à la population sur la sécurité industrielle ou reliée au transport de matières dangereuses.
ANNEXE 2 –
DÉTERMINANTS DE LA SANTÉ AFFECTÉS PAR LE PROJET DE RÉAMÉNAGEMENT DU SECTEUR HARWOOD

Les déterminants de la santé sont des facteurs qui influencent directement ou indirectement la santé et le bien-être des citoyens. Ils expliquent en grande partie l’état de santé des citoyens et les écarts observés entre les individus. Agissant soit comme des facteurs permettant un développement optimal de la santé ou encore comme des facteurs limitant ou favorisant l’apparition de maladies, les déterminants de la santé peuvent être des facteurs individuels ou environnementaux (social et physique) [110, 118].

Dans le cadre du projet de réaménagement du secteur Harwood, les principaux déterminants de la santé affectés sont l’activité physique, la sécurité, les conditions socioéconomiques, le capital social, les îlots de chaleur urbains, la qualité de l’air et le bruit. Les effets de ces déterminants sur la santé sont succinctement présentés ici.

Activité physique
La pratique régulière d’activités physiques contribue au développement d’une bonne santé physique et mentale. Elle permet de réduire la mortalité pour divers types de maladies chroniques, et ce, chez les adultes de tous âges. Aussi, l’adoption d’un mode de vie physiquement actif est reconnue pour contrer l’obésité et l’embonpoint de même que réduire l’apparition de diverses maladies, dont les maladies cardiovasculaires et plusieurs types de cancer [119-121]. En effet, les personnes qui pratiquent au moins 30 minutes d’activité par jour voient leur risque de développer un cancer du côlon diminuer de 30 à 40 %. Une telle pratique permet également aux femmes de diminuer leur risque de cancer du sein de 20 à 80 % ainsi que leur risque de cancer de l’utérus d’environ 20 à 50 % [122, 123]. La pratique de l’activité physique est également reconnue pour réduire le stress et la dépression [124, 125].

Au quotidien, les 30 minutes d’activités physiques recommandées chez les adultes et les 60 minutes chez les jeunes [126] peuvent être atteintes par la pratique de loisirs ou de déplacements actifs, comme la marche et le vélo. En Montérégie,2 en 2011-2012, près de 6 adultes/10 (59 %) ne sont pas suffisamment actifs durant les activités de loisir et de transport pour en tirer des bénéfices pour leur santé [127].

Sécurité
La notion de sécurité peut se décliner sous plusieurs variantes, dont celle de sécurité objective, quantifiable en termes de risque relatif, et celle de sentiment de sécurité associé à la perception d’un danger. Dans tous les cas, des lacunes à la sécurité peuvent engendrer des blessures (traumatismes), des décès ou l’adoption de comportements ayant des répercussions potentiellement néfastes sur la santé et la qualité de vie, telles qu’une augmentation du stress ou une diminution de la pratique d’activités physiques.

2 Pour cette donnée, la Montérégie inclut les RLS La Pommeraie et de la Haute-Yamaska.
À l’échelle d’un quartier, les environnements naturels et bâtis et les activités s’y déroulant influencent la sécurité des résidents, incluant leur sentiment de sécurité. Ainsi, un quartier jugé non sécuritaire par ses résidents, en plus de provoquer de l’inquiétude et du stress, pourrait conduire à une faible fréquentation des parcs et autres espaces publics.

D’autre part, les aménagements des infrastructures de transport influençant les risques de collisions [20, 128-131], la prévention des blessures et décès liés aux collisions entre automobilistes, piétons et cyclistes peut se faire en privilégiant des mesures améliorant la sécurité de tous. À cet égard, la sécurité routière est un enjeu important en Montérégie alors qu’on dénombre plus de 7 300 victimes en moyenne par année, entre 2009 et 2013 [132]. En plus de réduire les risques de blessures et de décès, un aménagement renforçant la sécurité contribue à augmenter le sentiment de sécurité des citoyens et encourage davantage à recourir aux modes de déplacements actifs, particulièrement chez les enfants [133].

Un autre enjeu de sécurité important réside dans la sécurité reliée aux activités industrielles. La cohabitation entre les activités industrielles et les zones résidentielles peut exposer davantage la population aux conséquences d’un accident industriel impliquant des matières dangereuses. Ces événements sont définis comme le rejet accidentel d’une ou de plusieurs matières dangereuses pour la santé et/ou pour l’environnement. Les accidents peuvent se produire sur un site fixe (ex. : une usine) ou lors du transport des matières dangereuses. Certains sinistres naturels (ex. : inondations) peuvent aussi s’accompagner d’accidents industriels [134].

Les accidents impliquant des matières dangereuses peuvent être évalués par leur nature et leurs effets [135]. Lorsqu’une population est exposée à ces substances, les effets sur la santé varient grandement, notamment selon le type de substance impliquée.

Capital social (réseau social et soutien social)

Le capital social se définit comme le niveau de ressources sociales dont dispose un individu pour accéder à des services ou des biens [136]. À l’image du capital économique, le capital social contribue à la production de réalités matérielles et immatérielles, telles que la richesse et la santé [137].

À cet égard, le capital social a été identifié par plusieurs études comme ayant un impact sur la baisse de la mortalité et sur l’accroissement de la longévité [138-140]. Cette association s’explique notamment par la protection que confère le soutien social contre le stress et ses conséquences néfastes sur la santé physique et mentale [141]. L’appartenance à des réseaux sociaux est aussi reconnue pour son effet positif sur l’adoption de comportements favorables à la santé, tels que la pratique d’activités physiques [142, 143].

D’autre part, une communauté riche en capital social est également reconnue pour participer à son développement et sa croissance économique [144]. À cet effet, le capital social est reconnu pour être un facteur d’attraction et de rétention de la main-d’œuvre, particulièrement en milieu rural [67, 145], contribuant globalement à favoriser l’essor économique d’une région [146].

Conditions socioéconomiques

Les conditions socioéconomiques, principalement déterminées par l’emploi, le revenu et la scolarité, déterminent la capacité des citoyens à subvenir à leurs propres besoins et à se procurer des biens et services essentiels à une vie en santé [147, 148]. Les conditions socioéconomiques sont associées à la santé de plusieurs façons, l’emploi et le revenu sont...
reconnus pour influencer autant les conditions de vie que les habitudes de vie. Occupier un emploi contribue aussi à améliorer la santé mentale en favorisant le maintien d’une bonne estime de soi et d’un sentiment d’accomplissement personnel [149]. La distribution du revenu au sein de la population permet de démontrer ses effets sur la prévalence de nombreuses maladies. À cet égard, la Figure 46 et la Figure 47 révèlent que les revenus plus faibles sont associés à une prévalence plus élevée de maladies cardiaques et à une perception moins favorable de son propre état de santé mentale. Les données montréalaises (2004-2007) démontrent également que les hommes et les femmes favorisés au plan matériel et social peuvent respectivement espérer vivre 5,6 années et 2,3 années de plus que leurs concitoyens défavorisés du même sexe.

Figure 46 : Proportion de la population de 12 ans et plus atteinte de maladies cardiaques selon le quintile de revenu du ménage, Québec, 2009-2010

Figure 47 : Proportion de la population de 12 ans et plus percevant son état de santé mentale excellent ou très bon selon le quintile de revenu du ménage, Montérégie, 2009-2010

Source : Statistique Canada, Enquête sur la santé dans les collectivités canadiennes (ESCC), 2009-2010.
Alimentation

La saine alimentation contribue à la prévention de nombreuses maladies chroniques, telles que le diabète, l’obésité, les maladies cardiovasculaires (MCV), l’ostéoporose et certains types de cancers [150]. La proximité et l’accessibilité économique des produits alimentaires sains contribuent à favoriser une saine alimentation et à diminuer l’insécurité alimentaire, c’est-à-dire à surmonter la difficulté rencontrée chez les personnes défavorisées à se nourrir convenablement [151].

À l’échelle municipale, l’aménagement urbain peut contribuer à améliorer l’accès à une offre alimentaire saine en encourageant notamment l’établissement de nouveaux commerces alimentaires dans les quartiers en étant exempts et en améliorant l’accès géographique aux commerces existants. L’accès économique aux aliments sains peut quant à lui être amélioré par l’aménagement de jardins communautaires [152]. L’accès gratuit à de l’eau potable dans les services publics contribue également à une saine alimentation [153].

Îlot de chaleur urbain

Un îlot de chaleur urbain (ICU) est une zone caractérisée par des températures estivales de 5 °C à 10 °C plus élevées que l’environnement immédiat [154]. L’urbanisation et les pratiques d’aménagement des villes contribuent à la création d’ICU, principalement en raison de trois facteurs : les matériaux utilisés emmagasinent la chaleur; la disparition du couvert végétal limite l’ombrage des surfaces et des bâtiments ainsi que la dissipation de la chaleur; l’élévation des bâtiments réduit la circulation de l’air et ralentit le refroidissement nocturne [155]. Ceci s’additionne à l’augmentation de la fréquence et de la durée des vagues de chaleur comme conséquences des changements climatiques [156].

Les ICU exacerben les impacts néfastes des canicules sur l’environnement et la santé. Ils contribuent à la hausse des demandes en énergie et en eau potable et peuvent générer un stress thermique chez les personnes, c’est-à-dire une trop grande accumulation de chaleur pour l’organisme empêchant le maintien d’une température corporelle normale. Ce stress thermique peut provoquer plusieurs problèmes de santé, dont des troubles de la conscience et des coups de chaleur, exacerber les maladies chroniques préexistantes, telles que les insuffisances respiratoires, les maladies cardiovasculaires et rénales, et même causer des décès [155, 157].

La vulnérabilité au stress thermique est plus élevée chez les personnes âgées (le risque de mortalité associé à la chaleur augmente après 50 ans), chez les bébés et les jeunes enfants [158]. Les personnes vivant seules sont également plus vulnérables en raison de leur risque d’isolement social. Certains problèmes de santé accroissent aussi le risque de mortalité en situation de chaleur extrême, notamment les maladies chroniques, l’obésité ou les problèmes de santé mentale [159]. Par ailleurs, certaines caractéristiques du logement, telles qu’un appartement mal isolé, situé aux étages supérieurs, ainsi que l’absence de système de ventilation adéquat, sont aussi associées à un risque de morbidité et de mortalité plus élevé pendant les vagues de chaleur [156, 157]. Les personnes ayant un faible revenu peuvent être particulièrement vulnérables en raison de conditions de logement inadéquates, de l’incapacité à acquérir un climatiseur ou parce qu’elles sont plus nombreuses, en proportion, à souffrir de certains problèmes de santé. En Montérégie, en 2006, un adulte sur cinq se disait être très incommodé par les vagues de chaleur intense ressentie à l’intérieur de sa résidence. Cette proportion est plus élevée chez les locataires (30 %) que chez les propriétaires (17 %), de même qu’en milieu urbain (22 %) comparativement au milieu rural (13 %) [160].
Bruit
Le bruit réfère à une sensation auditive désagréable ou gênante, à un son indésirable ayant un potentiel de gêne ou de menace pour la santé. Lorsqu’il est produit dans un environnement ouvert et affecte tout un milieu de vie, il est convenu de le considérer comme un bruit communautaire. Les principales sources environnementales de bruit sont associées au voisinage, au transport routier, aérien et ferroviaire, de même qu’aux activités industrielles [161]. Selon son intensité, sa durée et sa fréquence, les effets du bruit peuvent se traduire en différents degrés de gêne. Des bruits forts et répétés peuvent affecter la santé et la qualité de vie de différentes façons. Outre leurs conséquences négatives sur le système auditif, les bruits de forte intensité peuvent entraîner la perturbation de plusieurs activités de la vie quotidienne, dont la communication, le travail et les loisirs. Lorsqu’il survient pendant les heures de sommeil, le bruit peut devenir un agent stressant et engendrer des troubles du sommeil [162]. Ces derniers peuvent engendrer des conséquences physiologiques et psychologiques importantes, dont une augmentation du rythme cardiaque, de la pression artérielle et des maladies cardiovasculaires. Les répercussions des troubles du sommeil peuvent également se faire ressentir pendant des périodes d’éveil du lendemain et provoquer une fatigue accrue, des changements de l’humeur, un état anxieux et dépressif et des performances réduites [72, 163, 164]. Chez les enfants, les troubles du sommeil peuvent apporter des déficits cognitifs et des difficultés d’apprentissage [161, 165].

Qualité de l’air
La qualité de l’air fait référence à la pollution atmosphérique et la présence de contaminants pouvant produire un effet nocif sur la santé ou une gêne importante à la qualité de vie. La principale source de polluant atmosphérique est générée par les transports. En effet, en 2008, au Québec, le transport était responsable de 62 % des émissions des principaux polluants atmosphériques (NOx, SOx, CO, COV et particules) [166].

Les effets de la pollution atmosphérique sur la santé sont multiples et peuvent se traduire par des symptômes respiratoires aigus (toux, irritation et inflammation des bronches) et des maladies chroniques affectant le système cardiorespiratoire [167, 168]. Suite à une exposition à court terme, la pollution atmosphérique contribue principalement à exacerber les maladies respiratoires ou cardiovasculaires préexistantes (asthme, ischémie, etc.) [169-171] et est associée à une hausse des hospitalisations et des visites à l’urgence [168, 172]. Lors d’une exposition à long terme, une hausse de la mortalité, des cancers du poumon et des pneumonies est rapportée [168, 170]. Récemment, le Centre international de Recherche sur le Cancer (CIRC) a reconnu la pollution de l’air extérieur comme étant aussi cancérigène pour l’homme que la fumée de tabac secondaire [173].

Ainsi, il a été estimé en 2004 que la pollution atmosphérique est responsable de 6 000 décès prématurés par année dans huit grandes villes du Canada, ce qui représente 8 % des décès pour toutes les causes confondues [168]. Même si la pollution de l’air touche l’ensemble de la population, les personnes défavorisées sont plus susceptibles d’y être exposées et d’en subir les contrecoups, notamment parce qu’elles habitent des quartiers dont l’exposition aux polluants atmosphériques est plus élevée [172, 174]. Par ailleurs, en raison de leur système immunitaire ou leur état de santé amélioré, les jeunes enfants [175], les personnes âgées [170] et les personnes atteintes de maladies chroniques [170] sont plus susceptibles de souffrir d’une exposition accrue à la mauvaise qualité de l’air.
ANNEXE 3 –
COMITE MIXTE MUNICIPALITE-INDUSTRIES (CMMI) : DEFINITION ET FONCTIONNEMENT

Lors d’un accident industriel majeur, la municipalité a autorité sur son territoire et il lui incombe de gérer les opérations d’intervention. Les entreprises détenant des matières dangereuses ont quant à elles la responsabilité, en vertu de certaines lois fédérales et provinciales, de déclarer leurs matières dangereuses à la municipalité. Ces entreprises doivent également élaborer des plans de mesures d’urgence adéquats pour limiter les conséquences d’un accident industriel sur la population et l’environnement.

Pour mieux connaître les risques associés à la présence de matières dangereuses sur leur territoire et pour faciliter les échanges entre les partenaires impliqués dans la gestion de ces risques, plusieurs municipalités au Québec ont formé des comités mixtes municipalité-industries (CMMI). Le CMMI est un regroupement de représentants municipaux, industriels, gouvernementaux et de citoyens, qui a pour objectif d’identifier les risques industriels majeurs, d’établir et d’arrimer les plans de mesures d’urgence entre les partenaires, ainsi que d’informer la population sur les risques présents et les mesures à prendre pour se protéger en cas d’accidents industriels. Pour ces raisons, un CMMI est généralement composé de trois sous-comités : analyse des risques; préparation et intervention; communications.

Le CMMI fonctionne sur une base volontaire, ce qui implique que les entreprises participantes, qu’elles soient ou non déclarantes en vertu du Règlement sur les urgences environnementales (RUE), n’ont aucune obligation de s’y joindre. Cependant, il est dans l’intérêt des entreprises d’y participer, puisque le CMMI contribue à assurer un meilleur arrimage des plans d’urgence et permet aux entreprises de se conformer à leur obligation de communiquer les risques à la population.

Il y a actuellement (2015) quatre CMMI en activité en Montérégie :

- Agglomération de Longueuil (http://www.longueuil.ca/fr/CMMI)
- Beauharnois (http://ville.beauharnois.qc.ca/mairie/structure-administrative/securite-incendie-et-securite-publique/)
- Salaberry-de-Valleyfield (http://www.affairesvalleyfield.com/cmmi)
- Varennes (http://www.ville.varennes.qc.ca/citoyens-securite/cmmidevarennes)

Pour plus d’information, contactez le ministère de la Sécurité publique :
Direction générale de la sécurité civile et de la sécurité incendie
Ministère de la Sécurité publique
165, rue Jacques-Cartier Nord
Saint-Jean-sur-Richelieu (Québec) J3B 6S9
Téléphone : 450 346-3200
Télécopieur : 450 346-5856
www.securitepublique.gouv.qc.ca
BIBLIOGRAPHIE

23. Thomthwaite, S., N. Coleman, and G. S.D., *Tackling social exclusion due to poor access in urban and rural areas*, 2003, Association for European Transport.

52. Smart Growth America, Smart Growth Project Scorecard, 2007.
65. Pikora, T.J. and al., Developing a framework for assessment of the environmental determinants of walking and cycling. Social Science and Medicine, 2002. 56: p. 1693-1703.
69. Institut Belge pour la Sécurité Routière (IBRS), Les sites partagés bus-vélo, 2013. p. 34 pages.
73. Boer, E.d. and A. Schroten, Traffic noise reduction in Europe. Health effects, social costs and technical and policy options to reduce road and rail traffic noise., 2007, CE Delft.
80. Abraham, A., K. Sommerhalder, and T. Abel, Landscape and well-being: a scoping study on the

86. McCormack GR, et al., Characteristics of urban parks associated with park use and physical activity: a review of qualitative research. Health & Place, 2010. 16(712-726).

97. Shaw, M., Housing and public health. 2004(0163-7525 (Print)).

106. Oswald, F., et al., Housing-related control beliefs and independence in activities of daily living in very

137. van Kemenade, S., Le capital social comme déterminant de la santé: Comment le définir?2003: Santé Canada.

149. BC Healthy Living Alliance, Healthy futures for BC Families: Policy recommendations for improving the health of British Colombians. 2009.

150. Fisher H. W., The Relationship between Nutrition, Disease and Aging: A Review

158. Institut canadien d'information sur la santé, Environnements physique en milieu urbain et inégalités en santé, 2011, ICIS: Ottawa (Ont.).

165. OMS, Burden of disease from environmental noise: Quantification of healthy life years lost in Europe, 2011.

175. Krewski, D. and D. Rainham, Ambient Air Pollution and Population Health: Overview. Journal of
